
The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

REDUCING REPETITIVE DEVELOPMENT TASKS IN AUDITORY MENU DISPLAYS
WITH THE AUDITORY MENU LIBRARY

Parameswaran Raman, Benjamin K. Davison, Myounghoon Jeon, and Bruce N. Walker

Sonification Lab
Georgia Institute of Technology

430 Cherry St.
Atlanta, GA 30332

params.raman@gatech.edu

ABSTRACT

This paper explores the process of auditory menus research. Sev-
eral parts are tedious tasks which must be repeated for minor
changes to the experiment. Fortunately many of these parts can be
automated with software. We present the Auditory Menu Library
(AML), a tool for simplifying experiment construction. The AML
provides a cross-platform, configuration-based turnkey solution to
studies involving auditory menus.

1. INTRODUCTION

This paper explores auditory menus research from a process stand-
point and describes an extensible multi-purpose library to help per-
form similar auditory menus experiments in the future. By reduc-
ing the costs involved with experimental development, we will ex-
pand the possibilities of research in auditory menus.

The first part of our investigation explored the various research
elements of interest in auditory menus, such as submenu behavior
or sound types used. This follows the footsteps of Yalla and Walker
[1], but we focus on what has been explored experimentally instead
of what conceptually is important in menus.

We then studied the general parameters that researchers might
be interested in configuring across various sets of experiments
and the steps that are required to prepare for user studies. These
will give us an understanding of the breadth of study-based func-
tionality that a supporting software tool should possess. In addi-
tion, the repetitive nature of menu design, experimental definition,
and platform-specific user interface descriptions begs for a more
generic, automated process that will support study replication and
extension.

This report summarizes our findings and describes a new tool:
the Auditory Menu Library (AML). This research tool has been
developed specifically to aid sonification experiments in auditory
menus. The final section describes the system architecture of the
Auditory Menu Library, explaining its design and implementation
details, with relevant examples.

2. AUDITORY MENUS RESEARCH

Menu displays in a computer provide a list of choices. When se-
lected, the system performs a particular task. Getting to the correct
selection involves an interaction between the display and the user.
Finding a particular item in a menu involves a consideration stage,
which can take place in the user’s mind but often is also a part of

the display itself. In visual menus, this is typically done with a
highlight over whatever menu item the user has their mouse hov-
ering. Therefore, a menu choice involves both a pre-selection, or
hovering, and a selection, some binary action that indicates that
the user has decidedly picked the hovered item. In auditory menu
display pre-selection of menu items is the most informative step.
The actual selection often does not render the full representation
of the pre-selection.

Auditory menus research has featured several components:
speech; non-speech: auditory icons, earcons, spearcons, and spin-
dex; auditory scrollbar; combinations of speech and non-speech
sounds; available and unavailable menu items; visuals on or off;
push and pull menus; different interaction styles; hierarchical
menu structures; and broad versus deep menus. This section ex-
plores each of these components in more detail. For an analysis
of visual menu structures and their applications to auditory menus,
see [1].

2.1. Speech

The naive auditory menu is completely speech-based, activated
when the user pre-selects and selects a particular item. Specif-
ically, the item label (the visual text) and sometimes the item’s
properties (such as “unavailable”) are “spoken” by the system.
Commercial systems that speak menus use a text-to-speech (TTS)
engine. For research, high-quality TTS or human speech is prere-
corded for the menu.

Since visual menus are spatial, and since people can easily
move their eyes to “scan” a menu, responses to searching for an
item on a visual menu are relatively faster than the a spoken menu.
Non-speech sounds alleviate this serial characteristic of speech-
only approaches. However, Non-speech sounds are not typically
designed to fully replace speech in a non-visual auditory menu,
and often the study stimuli use speech in combination with non-
speech sounds.

2.2. Non-speech sounds

The first studies in using non-speech sounds in auditory menus
were attempted in the form of earcons by Brewster in particular
[2, 3, 4, 5]. Walker et al proposed a speech-based sound called
Spearcons that could be used to improve navigational performance
in auditory menus [6]. This was followed by the conception of an-
other concept called Spindex [7] which provides auditory equiva-
lents to the visual concept of bookmarks used in a telephone direc-

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

Experiment Device Prog. Env.
Spearcon and TTS [12] Desktop Director, mobile
Spearcon and TTS [6] Cellphone Java
Spindex and TTS [7] Desktop Director, mobile
Spearcon, Spindex, and
TTS, dual task [14]

Car head
unit

C# Centrafuse

Auditory Scroll Bar [8] Desktop Flash

Table 1: Research with one-dimensional menus.

tory. Auditory Scrollbars were designed and evaluated by Walker
and Yalla in [8]. With such a growing scope for research as evident
from the previous citations, it also becomes essential to conduct
exhaustive experimental analysis, evaluate and gathering feedback
from the user community. The rest of the section focuses on some
key elements of research in the wide domain of auditory menus,
with a view to gather data that would be useful to help identify
the prime objectives and development goals for the AML. Yet an-
other work in non-speech sounds is auditory icon. Gaver’s audi-
tory icons provided a way to represent WIMP1 elements in a non-
arbitrary way [9, 10]. Natural sounds could represent incoming
mail, folders, or a disk drive. However, not everything in the com-
puter can be metaphorically converted to a natural sound; what
is the natural sound of “Save as HTML”? The other non-speech
sounds sacrifice the natural sounds for categorical and descriptive
information [11, 12].

Earcons originated as a way to provide organization informa-
tion as variables in the sound itself [13]. Elements of the item’s
role and position in the menu structure were represented. This
would arguably facilitate the user’s navigation of the menu space,
particularly if visuals are not available [11].

The definition of “earcon” seems to encompass any brief, or-
ganized sound that is not natural or speech-based. This simple
worldview could categorize all menu sounds as having compo-
nents of earcons, auditory icons, or speech. However, spearcon
and spindex are hybrid concepts which provide structural informa-
tion like an earcon but are rooted in a verbal interpretation of the
element.

Spearcons gain some benefit of speech information while re-
ducing the time cost of listening to speech [15]. Speech is an effec-
tive way to convey information. Spearcons attempt to maintain el-
ements of the phonemes that would be present in the standard oral
output. Spearcons are compressed speech using a type of selective
sampling of the speech based on the SOLA (Synchronized Overlap
Add Method) algorithm [16, 17], which produces the best-quality
speech for a computationally efficient time domain technique.

Spearcons might be useful in more familiar menus, such as
a personal cell phone address book, but take some time to learn.
Therefore, they are typically placed along with spoken text fol-
lowing the spearcon. The user can skip the full speech once they
are familiar with the items. The utility of spearcons has been eval-
uated many times [12, 14, 18, 19, 6].

Spindex is an indicator of the user’s position in a sorted alpha-
betical menu. Typically this is manifested by the first letter of the
selected word. Accordingly, for a name “John Smith”, the spindex
cue is /dZeI/ or simply /dZ/ (or /es/ or /s/, depending on sorting).
These cues provide the user, an indication of his current position
in the list and help him navigate to the desired item much more

1Windows, Icons, Menus, Pointers interface.

Experiment Device Prog. Env.
Spearcon, earcon, auditory
icon, and TTS [15]

Desktop E-prime

Spearcon and TTS [20] Desktop Director
Earcon and spearcon [19] Desktop Director
Auditory icon, earcon,
spearcon, and speech [18]

Desktop Flash & Java

Speech menu item availabil-
ity [21]

Desktop
Mac

Java

Table 2: Research with hierarchical menus

rapidly. Thus the spindex is most useful when going through large
sorted lists [7], since the user could make an educated decision as
to move up or down based on the current spindex cue.

2.3. Auditory Scrollbar

An auditory scrollbar is an analog to a visual scrollbar: as the
value in the 1-dimensional range changes, the scrollbar changes
in pitch. The auditory scrollbar can be designed in four different
ways - using single tone, double tone, proportional grouping and
alphabetical grouping [8]. The pitch polarity is adjusted based on
these approaches. Auditory scrollbars may be useful in menus like
a Font menu that has hundreds of fonts listed in alphabetical or-
der where the user cannot navigate one by one. In such cases, it
might also make sense to combine auditory scrollbars with other
non-speech sound variants like spindex to enhance the user search.
Auditory Scrollbars are therefore, flexible enough to be used in
conjunction with other non-speech sounds in order to add value to
the user experience.

2.4. Combinations of Speech and Non-speech sounds

The sounds mentioned in the previous sections are often combined
in research studies. Spearcons, for example, are typically com-
bined with text-to-speech (TTS), so that a novice can still use
the TTS, while someone familiar with the list can leverage the
spearcon for quicker selection (for example, in [12, 14]). This
brings up several considerations:

• Is there any temporal overlap of items? Typically they are
presented serially.

• What sort of interval (quiet gap) should be placed between the
sounds?

• In what order will the sounds play?
• Should the display change with experience?
• How should menu item properties be represented?

Quite often, studies are comparing one approach to another,
so ensuring an apples-to-apples ordering and interval is a critical
aspect of the study.

2.5. Intervals and Ordering

An auditory menu item is always likely to be supported by a di-
verse set of non-speech sounds like spearcon, spindex, TTS and
auditory scrollbar. Since there is a possibility that researchers
might want to test all of them together, it is very important that
they conform to some standard order in which they are played. For

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

Figure 1: Order of non-speech sounds.

instance, using a spearcon, spindex, TTS and auditory scrollbar on
the pre-selection of a menu item might have an order as shown in
figure 1.

There can be notable intervals between each of these sounds
which is a value that is configurable. Varying this interval value
and sometimes the order might lead to interesting results in audi-
tory menus.

2.6. Unavailable menu items

Auditory menus tend to add information such as unavailable or
dimmed to the menu items which are disabled. An immediate ex-
ample for this is the screen reader software that ships with the Mac-
intosh operating system. However, there are also other rendering
possibilities such as using a lower voice or a whisper voice. One
can also switch between male and female voices to evaluate their
respective effects on menu usage and performance [21].

2.7. Visuals On/Off

Visuals On/Off is an essential experimental setting for almost all
the auditory menu experiments which allows the users to get a
real-time context of how auditory cues help them where no visual
cues are present. Often, when the visuals are on, we tend to rely
on them and not focus on the auditory elements fully. Having a
way to turn visuals off in almost every auditory menu experiment
is thus crucial for better results.

2.8. Push/Pull Menus

Another useful way to classify the auditory menus could be push
menus and pull menus, which are studied in context-aware sys-
tems (e.g. [22, 23]). These can plausibly be applied to auditory in-
terfaces as different ways of deriving information from the menu
items. In the case of push menus, the menu keeps reading out
the menu items (using TTS along with the non-speech sounds and
other auditory cues) in a specified order; it loops through all the
menu items. The user can then select the desired menu item when
it is being spoken. This is different from the more common pull
menus, where the menus items are played out to the user based
on navigation navigation (eg: cursor button presses). Or, in other
terms, the user decides which menu items to pull out. In our ex-
periments, we make use of these two variants very frequently and
hence, need a way to represent this configurability.

2.9. Interaction Styles

Auditory Menus have been tested on the desktop [12], on mobile
phones [6], and with in-vehicle navigation systems [14]. These
experiments involve users searching through a one-dimensional
menu list (such as a phonebook or MP3 song list) using up and
down arrow keys for a particular target name. However, since
many smart-phones today use advanced interaction styles such
as flick, finger-gestures, tap and wheeling on a touch screen de-
vice, the research community should consider how these interac-
tion styles affect the auditory display of menus. There should also
be an easy way to customize them as per needs and switch from
one style to another for demonstration purposes.

2.10. Hierarchical Menu

Hierarchical menus are more complex to handle because of the
variety of information that they contain. Some properties of hier-
archical menus include:

• Number of items in a menu
• Available/Unavailable state of the menu item
• Accelerators/Hot Keys for the menu item
• Grouping of menu items and Separators used
• Type of menu item (does it invoke a dialog, is a sub-menu or

top level-menu?)

The key challenge therefore is to incorporate all of these character-
istics successfully into auditory menus. More importantly, being
able to mix and match these features and test them across differ-
ent platforms and devices is essential for edging closer to practical
auditory menus.

2.11. Broad versus Deep Menus

The use of particular displays in a menu may depend on the menu
structure. One basic division in menu structures is broad versus
deep. There have been many explorations into broad versus deep
visual menus [24, 25, 26], and some in auditory menus [27]. Jeon
and Walker suggest that very broad menus have not been typically
considered [7], and their spindex solution is similar to a visual
analog of a visual letter of the current item appearing on the screen,
as seen on some iPods when scrolling through long music lists.
Changing the display of different structures of menus, visual or
auditory, is an open area of study.

3. AUDITORY MENU RESEARCH CHALLENGES

Based on the review above, there are several elements that appear
important to a research-oriented developer of auditory menus.

• There are many auditory menu sound types. Selection and
generation of the appropriate comparisons of sound types is a
key component to testing them. This includes combinations
of sound types including intervals.

• There are many menu properties, such as availability, accel-
erator, and submenus. While most of the research considers
only the structural and functional role of a menu item, many
other properties are commonly used in real applications and
need to be considered.

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

• Menu structures can be very broad(i.e., 1 level of 1000 songs),
or fairly deep(e.g., 5 levels of settings with 2 to 8 items in
each category). The structural definition of the menus is a
key component to describing the results of research, since the
structure determines, in part the ideal human performance of
the task. In addition, certain auditory menu sound types are
designed with a particular type of menu in mind. Intuitively a
hierarchical earcon is designed for a deep hierarchy, while a
spindex succeeds at long, single-dimension lists.

3.1. Roles

Auditory menus experiments require the following roles:

• an experiment architect who designs the study. The require-
ments are made by this role.

• a system developer who produces the software framework in
which the study is run.

• an experimenter who actually runs the experiment.
• a data analyst who determines what the study shows.

Multiple roles may be held by a single person, such as archi-
tect and analyst. It appears that the system developer is often a
different person from the experiment architect, who probably has
a more deeper insight into human factors and usability.Therefore,
communication of experiment goals is a critical component in at-
taining what is needed.

System development is necessary but arguably it doesn’t need
to be as complicated as it typically is. For example, if an ex-
perimenter needs two studies, one with spearcons and one with
earcons, the menu structure and logging system along with the rest
of the system can basically be the same.

3.2. Non-developers

The objective of building the library for auditory menu experi-
ments is to essentially bypass a need for a programmer. Most of
the menu definition is configurable. The average time required by
a person (not well-versed with programming) to create a menu ac-
tivity capture program, configure log files, traces and reports to
capture the results, and then run the trials should be as minimal as
possible. For instance, if the experimenter needs to add an audi-
tory scrollbar sound to her auditory menus, it should be as easy as
adding a line in a configuration file.

Currently, most of the tools developed are tightly bound to
the developers. For example, an application showcasing auditory
menu concepts on a Nokia phone with a phonebook list of items
cannot be easily tweaked by changing the names and adding new
sounds to it by a non-programmer, because this requires source
code modification, compilation, packaging, porting and so on. At
best, the names can be configured in a separate file, but the exper-
iment cannot be then run on the desktop or a different cell phone
platform. In addition, development in the same platform and pro-
gramming language may be done in parallel because of lack of un-
derstanding of another’s code base. This division leads to highly
repetitive system designs. Most of the systems described in Tables
1 and 2 were made independently of each other, not sharing a com-
mon basic structure. As a result, there was no feedback cycle and
similar amount of effort in terms of design and programming was
spent in both of them. This could have been avoided by sticking to
a generic framework that is reusable over and over again.

Be it Macromedia Director, Java or in-vehicle applications, a
change in the program environment to conduct a user study seems
a tough job for a non-programmer. Also, it doesn’t make sense
to keep learning new programming languages just for the sake of
modifying the application for re-use. It is unnecessary overhead
and time consumption.

3.3. Programmer Effort and Time

“Why do something in two days that will take two months to au-
tomate?” Ever since the inception of the ideas around non-speech
sounds, several applications were developed to test the usability
and evaluate the concepts developed. However, each time a new
application was developed from scratch; this resulted in duplica-
tion of programmer effort, often with similar pieces of code being
rewritten. There is code redundancy and unnecessary delays every
time an experiment is performed. Instead of evaluating entirely
new systems, developers can be put to use by adding concepts and
platform support to a larger auditory menus tool.

3.4. Multiple Devices and Platforms

Beyond accessibility for the visually impaired, auditory menus
may provide extra help on platforms with lower visual space and
attention than a traditional desktop interaction. Auditory menus
have been evaluated on the desktop, in mobile devices, and with
in-vehicle systems. Thus, simulations need to be designed on each
of these several types of platforms that demonstrate the features
available and help the users evaluate them. This is again a repet-
itive task because though the research questions might be simi-
lar, the particular software implementations vary from desktop to a
mobile device and to a vehicle (particularly in the user interface).
In addition, a replication will work best if a similar process and
identical data and stimuli are used. It would be impressive if there
were a way to reduce this implementation time and if researchers
could have a base toolkit that would expose much of the generic
features, which have to be merely extended with minimal effort.

3.5. Replication of Experiments

A research tool should support the replication of a past study. By
separating the data from the user interface, different researchers
over different places and times can run the same experiments if
they have the same data and environment set up. Building auditory
menus involves putting in pieces of code, wav files, adding config-
urations, etc. There needs to be a way to efficiently represent the
auditory menus in its entirety without any loss of information and
experimental data, and migrate this to any other device. For exam-
ple, once you create a hierarchical auditory menu on a Macintosh
notebook, you should be able to save it in some text file format on
the hard drive and use it to load the menu back on a mobile device.
It is reasonable to aim for a stable state where non-programmers
could store auditory menus simply in the form of plain configura-
tion files and play with it to generate different types of menus, add
hierarchies to them, modify the sounds from one type to another,
and initialize their experimental settings.

3.6. Existing Toolkits/Libraries for Auditory Menus

Very little prior work has been in this direction to build a toolkit
application to aid research auditory menus in particular. Mynatt

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

and Edwards created a process and a software tool called MER-
CATOR designed to map graphical user interfaces to equivalent
auditory interfaces [28]. This work essentially describes how an
accessibility tool like JAWS creates accessible spaces. However,
Mynatt and Edwards’s was a much broader study not covering the
specifics of auditory menus. Likewise, Brewster [29] and Davison
and Walker [30] provide audio toolkits that extend user interface
libraries with the concept of sound. Again, their focus was more
general than specific auditory menu design. In addition, these tools
are intended for use by end applications, and not specifically a re-
search study, so considerations such as latency, logging, and qual-
ity of stimuli are different. There is also need for a data structure
to represent an auditory menu of typical hierarchies and make it
used in experiments. Thus, the key jobs of Auditory Menu Library
are to automate the repetitive task of system construction and to
model menu structure. It helps reduce the time between wanting a
system and producing it.The next section discusses the system in
more detail.

4. AUDITORY MENU LIBRARY

The Auditory Menu Library (AML) is a generic library currently
in Java that helps its users represent the concepts of auditory menus
using a data-structure, replicate them across diverse platforms and
use them for experiments in a much more efficient manner. The
AML has been designed considering the varying programming
capabilities of major stakeholders involved in auditory menus re-
search. Experiment Architects could just interact with its data and
use it for customization to suit their experiments. On the other
hand, a System Developer could aim to leverage its Application
Programming Interface (API) to define more complex structures.
The AML is defined as:

• A YML (a human-readable configuration file) document defi-
nition that describes the structure of the menus and settings to
be used within the program. This defines the scope of accept-
able YML files: those that can be turned into auditory menus
by the AML.

• Menu objects that define the menu structure.
• A YML parser that converts a YML file menu definition into

the menu objects.
• A hook for user interfaces to turn menu concepts into visual

and auditory menus.
• A starter library that has converted the menu concepts into

menus on a device like desktop computers and mobile phones.

4.1. Development Goals

There were several goals in creating this software. First, it would
be transparent to a novice programmer. Other than working with
configuration files, there is little he would have to do to bring up
an auditory menu of his choice. Creating another modified menu
would be as trivial as copying fragments of an existing menu rep-
resentation and modifying its item names and other parameters.

Second, for the programmer, it offers methods that he could
use to create menus, menu items, menu hierarchies and pack them
appropriately into any structure he desires. He could also choose
to add auditory information to it, or even extend it to incorporate
a new research concept. In addition, and third, the library is ex-
tensible in that new menu components can be incorporated into it

Figure 2: Process of creating menus using AML.

by relating them to the generic menu types. It is designed as a set
of abstract Java classes which can be extended to suit the evolving
requirements. This is clearly a one-time programmer effort, af-
ter which the architect, experimenter, or analyst could leverage its
benefits. For example, defining a nearcon involves the following
steps: Create a nearcon concept (Java class), explain programmat-
ically how a nearcon works, and add nearcon parsing to the YML
parser. What doesn’t need to be done is a redefinition of the entire
user interface, menus, or other audio interactions.

Fourth, the library is robust and portable. The architecture has
been made so modular that the menu markup and menu model are
totally loosely coupled. This helps since, a programmer would
want to literally markup any menu that he has modeled and vice-
versa without any glitches. Java was selected as the language since
it has a strong cross-platform appeal on desktops. Current work is
expanding support to different mobile devices. If a device isn’t
supported, the developer only needs to create the user interface
explanation; the menu concept and YML files remain supported
by the current AML.

Fifth, the library has the ability to represent most of the experi-
mental scenarios in auditory menus with an emphasis to reduce de-
veloper intervention. As the science of auditory menus progresses
and grows with more advanced features, this library can adapt it-
self and reflect all of those concepts as well.

To summarize, our focus is on the nuts and bolts of building
the experiment, including:

• The roles of study development.
• Tools available for each role.
• The software structure that needs to be in place to show the

menus and to log data.
• The stimuli creation.
• Log file structure: sufficient information, portable to other

programs for analysis.

4.2. Architecture/System Design

The AML has been designed with the objective to achieve the
above mentioned development goals and facilitate easy modifica-
tions to it in the future. What this essentially means is that all the
components of the AML should be as loosely coupled to each other
as possible. This would ensure that enhancements made in one do

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

not negatively affect the others. This section discusses many of the
key components.

4.3. Menu Model

The AML deals with a variety of platforms and kinds of menus.
It is therefore natural for the menu components to be diverse and
different. The menumodel is a component that provides the ability
to design new hierarchy of menus and represent them as auditory
menus.

• MenuType
MenuType is a base class (abstract Java class) from which the
basic properties could be inherited to build customized and
newer menu components. In other words, the MenuType de-
fines the basic structure and the sub components under it de-
fine the functionality. This kind of design also facilitates bet-
ter abstraction, as we could push the more generic features to
MenuType, thereby maintaining the overall abstraction pro-
vided by menumodel. The underlying goal therefore is to
extract the common features of all menu components and ab-
stract them into this class. This prevents similar behavior from
being treated multiple times amongst menu components. For
instance, a menu item could be present either as available or
unavailable. The same applies to a menu as well. Therefore,
this common feature could be pushed up to MenuType that
collects all commonalities.

• Menu
Menu is a component derived from MenuType which repre-
sents an auditory menu. It is a collection of items of Menu-
Type. This can be used for top-level menus, sub-menus, con-
tacts list as seen in a mobile device and so on.

• Menu Item
MenuItem is a component derived from MenuType which
represents an auditory menu item. It defines most of the au-
ditory menu properties and represents the user actions on se-
lecting them.

• MenuHierarchy
MenuHierarchy contains the menu structure defined in the
menu model and is composed of a tree of menus and menu-
items. It can be visualized as a single package that bundles
all your auditory menu information and it can be then viewed
on varying devices/platforms. Once a MenuHierarchy is built
using the AML API, it becomes more convenient thereafter to
edit it by just modifying the YML file representation of it.

4.4. MenuHierarchyUI

MenuHierarchyUI defines a way to render the MenuHierarchy into
a UI specific to the device/platform. This exposes a method named
buildUI() to accomplish the translation. For example, in the case
of a desktop application, we could derive a specific implemen-
tation of MenuHierarchyUI termed as SwingHierarchyUI which
uses Java Swing libraries to render the MenuHierarchy on the
screen. Likewise, BlackBerryMenuHierarchyUI can be used to put
the MenuHierarchy on a Blackberry phone screen. This is impor-
tant because situations would be different on a mobile platform
and we would need to use the J2ME specific UI libraries. Our aim
is therefore to insulate the device specific technology from the core
concept of auditory menus (which remains the same everywhere).

The SwingHierarchyUI is intended for desktop user interfaces,

Figure 3: YML stores other meta-information about the
menuitem such as typeOfElement, enabled state,etc .

specifically desktops that use the Microsoft Windows, Mac OS, or
Linux varieties of operating systems.

4.5. Menu Markup

Menu Markup converts the YML files into their equivalent
MenuHierarchy objects so that they can be displayed on different
screens and devices.

• MenuParser
MenuParser is a generic class used to read the YML repre-
sentation of a menu structure and create a MenuHierarchy
out of it. This MenuHierarchy could then be rendered based
upon user’s choice. MenuParser offers functions like parse-
FileIntoObject() to accomplish this. This could be inherited
by several other classes like StandardMenuParser which could
be used to parse an XML file into MenuHierarchy, or XML-
MenuParser to parse an XML file.

4.6. YML as a Markup

YML has been adopted as the choice for markup over other com-
monly used languages like XML, primarily because YML is more
human-readable with less meta-information and other unwanted
data (refer Figure 3). This contrasts with an XML representation,
in which most of the file space is consumed by opening and closing
tags. YML’s familiar indented outline and lean appearance makes
it especially suited for tasks where humans are likely to view or
edit data structures, such as configuration files, dumping during
debugging, and document headers. It is extensively used in lan-
guages like Ruby and Python for storing user configuration.

4.7. Use Example

For example, the following code describes the process of con-
structing a MenuHierarchy named Mockup. As the very first step
MenuHierarchy object hierarchy is constructed, by passing in a
name and the visible state of the menu. Second, a File menu is cre-
ated by adding two menu items New and Open to it. Third, the top
level menu is added to the MenuHierarchy object hierarchy. AML
provides numerous overloaded constructors for the programmer to
set selective properties for the menu and menu items like enabled
state, visible state, accelerator, etc.

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

The newly constructed MenuHierarchy object hierarchy, can
either be saved as a YML file using the dump() function ex-
posed by Yaml, or displayed on a user interface by using a cus-
tom MenuHierarchyUI object so that it can be heard or visualized.
SwingHierarchyUI for instance, is a Java class that implements the
buildUI() method of the MenuHierarchyUI abstract class, in a way
so as to render the hierarchy object using Java Swing libraries on
a desktop.

MenuHierarchy h i e r a r c h y = new MenuHierarchy (”MH” , t rue) ;
V ec to r menus = new Vector<MenuType > () ;
menus . add (new MenuItem (”New” , true , ” menuitem ”)) ;
menus . add (new MenuItem (”Open ” , f a l s e , ” menuitem ”)) ;
h i e r a r c h y . addMenu (new Menu (” F i l e ” , menus , ”menu”)) ;
Yaml . dump (h i e r a r c h y , new F i l e (” Fi re foxMenu . yml ”) , t rue) ;
SwingHie ra rchyUI swingUI = new SwingHie ra rchyUI () ;
swingUI . buidUI (h i e r a r c h y , t ru e) ;

4.8. Salient Features

The library is extensible: a programmer can develop new menu
components by extending the generic MenuType provided and
adding specifics to it. This applies to other parts of the library
as well like the MenuParser which can be extended based on the
type of markup language followed.

Being developed in Java, AML is portable across most desktop
platforms (Windows, Linux, Macintosh) and also can be used in
Java-based mobile platforms such as Google Android and RIM
Blackberry.

The greatest strength of AML is its support for configuration
of its features. Choosing to turn visuals on or off, specifying which
menu items are enabled or disabled can all be done by modifying
the YML representation of the auditory menu.

Programmer intervention is required only if a new platform
is encountered and AML needs to be extended to support or add
features specific to it. Even that is a one-time task.

AML can be also be viewed as an effective research tool that
helps you organize your experiments quickly and neatly. It pro-
vides support for:

• Logging. While running any experiment, there is an enor-
mous amount of information a researcher might want to log
about the user and his interaction with the tool. This could be
response time, keystrokes, pattern of navigation, menu opera-
tions performed, etc. AML lets the person running the exper-
iment choose the data to log and generates periodic log files
which can be later examined for more details.

• Debug Dumps. These are files containing description about
the auditory menu, its sub-menus, inner details, their state be-
fore the application crashed and so on. This turns out to be
useful while troubleshooting.

• Reports. Data reports are essential to be generated for some
experiments like auditory menu experiments on handheld de-
vices to study how they perform with different user popula-
tions. Specifically, understanding how a new user adapts to
auditory menus, measuring the change in his response time
and his learning rate could help foster research in a greater
magnitude. AML aids in capturing such information by track-
ing the user interaction.

4.9. Issues Faced

Several issues were encountered in the design and development of
AML. It involved tremendous effort to make things generic bear-
ing the various platforms in mind and devices that auditory menus
might have to be used on. Even on using Java, numerous JDK ver-
sion compatability and class file version issues had to be resolved
to make AML run across desktop and mobile environments, be-
cause not all Java API are the same on all mobile platforms. Port-
ing AML to the Android platform was a relatively easier task than
Blackberry since Android is closer to the traditional JDK develop-
ment supporting latest Java constructs such as iterators and gener-
ics. Infact, the way a particular task (like reading a file from the
filesystem) is accomplished differs greatly from one platform to
another. For instance, during AML’s development phase, it was
discovered that reading a file on Android seemed almost the same
as on Desktop PCs but on Blackberry it was drastically different.
Thus, a lot of functionality had to be implemented in different
ways on each platform (leveraging features specific to the plat-
form). As a result of these, the AML design had to be refactored
by adding more generic features and interfaces.

Several delay issues were found while migrating AML to mo-
bile devices because of the inherent limitations of the device mem-
ory and processor speed. As a result, the feedback of the applica-
tion was sometimes quite different and inferior from the one as
observed on a desktop. New solutions are being implemented to
address issues such as these as they arise.

4.10. Demonstration Application

A sample application was developed that made use of the Auditory
Menu Library to create auditory menu structures in the form of
YML files, render it on the desktop user interface and also test
the effects of applying the various sound elements like spearcon,
spindex and auditory scrollbar to the menus.

This demo application built into the AML displays two differ-
ent kind of menus - a hierarchical menu and a linear menu, both of
them built from a single YML file. The hierarchical menu consists
of active and disabled menu items, sub-menus and menu items that
invoked a dialog. The linear menu consists of a list of phonebook
contacts to which an auditory scrollbar was attached and its com-
bination with other sounds like Spearcons and Spindex could be
observed. It is also possible to turn off features selectively to em-
phasize other specific ones and derive conclusions.

5. CONCLUSION

This paper provided an overview of the history of auditory menus
research. It explored the repetitive challenges faced, particu-
larly during system development. Finally, we discussed the au-
ditory menu library, an extensible Java tool designed to sup-
port experimenter and programmer development of research-
oriented auditory menus. This software can be accessed at
http://sonify.psych.gatech.edu

6. REFERENCES

[1] P. Yalla and B. Walker, “Advanced auditory menus,” Georgia
Institute of Technology GVU Center, GVU Technical Report
GIT-GVU-07-12, Oct. 2007.

The 16th International Conference on Auditory Display (ICAD-2010) June 9-15, 2010, Washington, D.C, USA

[2] G. Leplatre and S. A. Brewster, “Designing non-speech
sounds to support navigation in mobile phone menus.” in
Proceedings of the 6th International Conference on Auditory
Display, Atlanta, GA, 2000, pp. 190–199.

[3] S. A. Brewster, “Using non-speech sounds to provide navi-
gation cues,” ACM Transactions on Computer-Human Inter-
action, vol. 5, no. 3, pp. 224–259, 1998.

[4] S. A. Brewster, V. Raty, and A. Kortekangas, “Earcons as a
method of providing navigational cues in a menu hierarchy,”
in Human Computer Interaction, 1996, pp. 167–183.

[5] S. A. Brewster, P. C. Wright, and A. D. N. Edwards, “A
detailed investigation into the effectiveness of earcons,” in
Proceedings of the 1st International Conference on Auditory
Display, Santa Fe, NM, USA, 1992, pp. 471–478.

[6] B. N. Walker and A. Kogan, “Spearcons enhance perfor-
mance and preference for auditory menus on a mobile
phone,” in Universal Access in HCI, ser. Lecture Notes in
Computer Science. Berlin: Springer-Verlag, 2009, no. 5615,
pp. 445–454.

[7] M. Jeon and B. N. Walker, “”Spindex”: accelerated initial
speech sounds improve navigation performance in auditory
menus,” in Proceedings of the Annual Meeting of the Hu-
man Factors and Ergonomics Society, San Antonio, TX, Oct.
2009.

[8] P. Yalla and B. N. Walker, “Advanced auditory menus: De-
sign and evaluation of auditory scroll bars,” in Proceedings
of the Tenth International ACM SIGACCESS Conference on
Computers and Accessibility. Halfax, Canada: ACM Press,
Oct. 2008, pp. 105–112.

[9] W. W. Gaver, “Auditory icons: Using sound in computer in-
terfaces,” Human-Computer Interaction, vol. 2, pp. 167–177,
1986.

[10] ——, “The SonicFinder: an interface that uses auditory
icons,” Human-Computer Interaction, vol. 4, pp. 67–94,
1989.

[11] S. A. Brewster, P. C. Wright, and A. D. N. Edwards, “An
evaluation of earcons for use in auditory human-computer in-
terfaces,” in Proceedings of the INTERACT ’93 and CHI ’93
conference on Human factors in computing systems. Ams-
terdam, The Netherlands: ACM, 1993.

[12] D. Palladino and B. Walker, “Efficiency of Spearcon-
Enhanced navigation of one dimensional electronic menus,”
in Proceedings of the 14th International Conference on Au-
ditory Display, Paris, France, 2008.

[13] M. M. Blattner, D. A. Sumikawa, and R. M. Greenberg,
“Earcons and icons: Their structure and common design
principles,” Human-Computer Interaction, vol. 4, pp. 11–44,
1989.

[14] M. Jeon, B. K. Davison, J. Wilson, M. Nees, and B. N.
Walker, “Enhanced auditory menu cues improve dual task
performance and preference with in-vehicle technologies,”
in Proceedings of the First International Conference on Au-
tomotive User Interface and Interactive Vehicular Applica-
tions. Essen, Germany: ACM, Sept. 2009.

[15] B. N. Walker, A. Nance, and J. Lindsay, “Spearcons: Speech-
based earcons improve navigation performance in auditory
menus,” in Proceedings of the 12th International Conference
on Auditory Display, London, England, 2006, pp. 63–68.

[16] D. J. J. Hejna, “Real-time time-scale modification of speech
via the synchronized overlap-add algorithm,” Master’s The-
sis, Massachusetts Institute of Technology, Cambridge, MA,
May 1990.

[17] S. Roucos and A. M. Wilgus, “High quality time-scale modi-
fication for speech,” in Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing. New
York, NY: IEEE, 1985, pp. 493–496.

[18] T. Dingler, J. Lindsay, and B. N. Walker, “Learnability
of sound cues for environmental features: Auditory icons,
earcons, spearcons, and speech,” in Proceedings of the 15th
International Conference on Auditory Display, Paris, France,
2008.

[19] D. Palladino and B. N. Walker, “Learning rates for auditory
menus enhanced with spearcons versus earcons,” in Proceed-
ings of the 14th International Conference on Auditory Dis-
play, Montreal, Canada, 2007, pp. 274–279.

[20] ——, “Navigation efficiency of two dimensional auditory
menus using spearcon enhancements,” in Annual Meeting of
the Human Factors and Ergonomics Society, New York, NY,
Sept. 2008, pp. 1262–1266.

[21] M. Jeon, S. Gupta, B. K. Davison, and B. N. Walker, “Audi-
tory menus are not just spoken visual menus: A case study
of ”unavailable” menu items,” in Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (CHI
Work in Progress). Atlanta, GA: ACM Press, 2010, p. in
press.

[22] L. Barkhuus and A. Dey, “Is context-aware computing tak-
ing control away from the user? three levels of interactivity
examined,” in Proceedings of Ubicomp 2003, 2003, pp. 149–
156.

[23] K. Cheverst, K. Mitchell, and N. Davies, “Exploring context-
aware information push,” in Personal and Ubiquitous Com-
puting, 2002, pp. 276–281.

[24] A. Howes, “A model of the acquisition of menu knowledge
by exploration,” in Proceedings of the SIGCHI conference on
Human Factors in Computing Systems. Boston, MA: ACM
Press, 1994, pp. 445–451.

[25] J. I. Kiger, “The depth/breadth trade-off in the design of
menu-driven user interfaces,” International Journal of Man-
Machine Studies, vol. 20, pp. 201–213, 1984.

[26] D. P. Miller, “Depth/breadth tradeoff in hierarchical com-
puter menus,” in Proceedings of the Human Factors Society
Meeting, Rochester, NY, USA, Oct. 1981.

[27] P. M. Commarford, J. R. Lewis, J. A. Smither, and M. D.
Gentzler, “A comparison of broad versus deep auditory menu
structures,” Human Factors, vol. 50, no. 1, pp. 77–89, 2008.

[28] E. Mynatt and W. Edwards, “Mapping GUIs to auditory in-
terfaces,” in 5th Annual ACM Symposium on User Interface
Software and Technology. Monteray, California, United
States: ACM, 1992, pp. 61–70.

[29] S. Brewster, “A sonically enhanced interface toolkit,” in Pro-
ceedings of the 3rd International Conference on Auditory
Display, Palo Alto, CA, U.S., 1996.

[30] B. K. Davison and B. N. Walker, “AudioPlusWidgets: bring-
ing sound to software widgets and interface components,” in
Proceedings of the 14th International Conference on Audi-
tory Display, Paris, France, 2008.

