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After transformers, neural networks are getting out of control

- [

BERT-LARGE (2018) GPT-2 (2019) MEGATRON-LM (2019) T5 (2019) T-NLG (2020)

# parameters in billion

* Memory issues: model does not fit into a GPU such as V100 (16 or 32 GB memory)
 Runtime issues: training requires a few days if not weeks

* Memory is a dimension that is largely ignored in communication efficient methods
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ZeRO3 increases communication overhead

d  Memory: ZeRO3 partitions parameters / gradients / optimizer states
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Each cell © represents GPU memory used by its corresponding transformer layer Each GPU is responsible for 1 piece of the end model

ZeRO P,.,., and Gradient accumulation are used with the 4-way data parallelism

 Communication: ZeRO3 increases communication overhead by 50% to save memory

* @Goal: understanding the memory and communication tradeoff
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How to reduce the communication overhead for ZeRO3

EFSGD
- model 1: Initialize: xo € R% ey = 0 € R%, 7
2: fort=0,1,..., T — 1do
- gra dient 3: assert x; = xﬁ for every worker
4: for worker ¢ in parallel do
5: pi = ngi + e
6: Al = Q(pi) |
7: A, = Aggregate(Aj, Vi)
. . 8: X't+1 - X? o At
optimizer 9: gl =ph—Al
10: end for
11: end for
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Communication

Memory - communication tradeoff in ZeRO
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Conkr:-ZeRO3
EF;ZeR0O3....

Memory on a single GPU
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How to get to

Step 1: algorithm design

Step 2: test with adam

Step 3: integrate to ZeRO3
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J Algorithm design
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Communication bottleneck

(1 Communication time increases with workers [VKM’ 19]

m Forward pass, m Backward pass, m Gradient exchange, @ Encoding and decoding.

2 workers 4 workers 8 workers 16 workers
Rank 2 7 | 77 e e
SGD | s | | A . 200
Signum | A - | mn .,

J Efficient communication reduces idle time

SGD Compressed SGD

Computation oW

Communication

. . encode and
encode and comm. comm.
P

time time
© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

v



Why EF is necessary

- localerror
- model
- gradient

optimizer

J  Local SGD [Stich’ 19]
e Communicate every a few iterations

* Infeasible for ZeRO3 since optimizer states are partitioned
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Why EF is necessary

100
e SGD
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(d Unbiased gradient compressors [ADGLTV’ 17]

* Enlarged gradient variance hurts performance (e.g., accuracy)
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Contractive error feedback (ConEF)

ConEF EFSGD
1: Inmitialize: xo € R% e} = 0 € R4, Vi, n 1: Initialize: xo € R%, e} = 0 € R, Vi, n
2: fort=0,1,...,7T — 1do 2: fort=0,1,..., T —1do
3: assert x; = x! for every worker i 3: assert x; = x for every worker 4
4: for worker 2 = 1,..., N in parallel do 4: for worker 2 = 1,..., N in parallel do
5: P; = ng; + €} 5: P; = 1g; + €
6 Ai=0Q(pi) 6 Ai=0Q(pi)
7: A; = Aggregate( A}, Vi) 7: A; = Aggregate(A}, Vi)
8: Xt_|_1 = Xt — At . 8: XH_l = X,; — At
9: ;11 = C(p; — AY) 9: €11 = P; — A
10: end for 10: end for
11: end for 11: end for

* Key idea: compressors can be used on local error as well
* Simple operation saves more runtime

* Convergence: ConEF finds the sweet spot of QSGD and EFSGD

* Practicality: depending on which error compressor to use
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Convergence of ConEF

ConEF

1: Inmitialize: xo € RY e}, = 0 € R%, Vi, 7
2: fort=0,1,...,T — 1do

3:  assert x; = X for every worker i
4 for worker ¢ = 1,..., N in parallel do
5: P; = ng; + €;
6: At = Q(p}) |
7: A; = Aggregate( A}, Vi)
8: X.t+1 = Xt — At .
9: e;11 = C(p; — A})
10: end for
11: end for

Memory

* Assumption on error compressor  E[C(x)] = x and E[||C(x) — x||*] < 0E[||x]*]

* Assumption on gradient compressor 34 € (0,1), s.t. E[||Q(x) — x||?] < dE[||x||*]
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Deeper dive into error compressors C

* Assumption on error compressor  E[C(x)] = x and E[||C(x) — x||?] < 0E[||x]|*]

* Unbiased C has some generalization merits

100
90 -
>
O
o
- |
O 801
©
g SGD
qSGD
70 - EFSGD
hEFSGD 60%
ConEF-CS 60%
ConEF-CS 90%
60 4= T . . . .
0 1000 2000 3000 4000 5000
runtime (s)
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Deeper dive into error compressors C

* Rule of thumb: count sketch [CCF ‘02]

* One can also use e.g., stochastic quantization [ADGLTM’ 17] and its variants
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Deeper dive into error compressors C

a
=1 |
| 1: Initialize: xo € R%,eg =0 € R%, 7
= o 2: fort =0,1,...,7 —1do
a | g 3 assert x; = X for every worker ¢
O ® -3 4 for worker ¢ in parallel do
al 5 p; = ng; + (1 — B)e;
N 6: At = Q(pt) |
e | 7: A; = Aggregate( A}, Vi)
1\0\// = \// 8 Xi+1 = X¢ — Ay |
e20 30 A 10 20 9: €11 = C(Bes + p; — A})
log(i) ! log(i) 11: end for
EFSGD (partial)-EFSGD [AF’ 20]
Table 1: 3 vs. sketch size for convergence
o) 0170210304 ]05|06]07]08]0.9
smallest sketch size | 0.9 | 0.8 | 0.7 | 0.6 | 04 | 0.4 | 0.3 | 0.2 | 0.1
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Side results on tighter bounds

* Using ConEF on top of ConEF improves the convergence rate theoretically

improved ConEF (iConEF)

1: Initialize: xq, &} = 0,q}, = 0,7

2: fort=0,1,...,T — 1do

3: assert X; = x';' for every worker 7
4: for worker 2 = 1, ..., N in parallel do
5; P: = n8; + €; + q;

6: A; = 9(p;) |

7: A; = Aggregate(A?, Vi)

8: Xi+1 = Xt — Ay

9: if version 1 then: '
10: €11 = C(p; — A})
11: else: . _
12: e, = Q(p; — A})
13: end if . .
14: qi+1 = C(p; — A}
15: end for
16: end for

> 1ConEF-v1

> 1ConEF-v2
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Roadmap

1 Numerical experiments
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Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

e Gradient compressor: random block k (90% reduced comm.)

* Error compressor: count sketch

* ResNetl1l8 on CIFAR-10

Algorithm | test accuracy | runtime (min) | memory saving (MB)
SGD 93.20 54.83 -
bSGD 86.58 40.12 48.2
EFSGD 92.52 40.41 0
ConEF 60% 92.53 42.45 31.5
ConEF 90% 92.02 42.45 44.1

© 2021, Amazon Web Services, Inc. or its Affiliates.
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Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

e Gradient compressor: random block k (90% reduced comm.)

* Error compressor: count sketch

* WideResNet-28-10 on CIFAR-10

Algorithm | test accuracy | runtime (min) | memory saving (MB)
SGD 96.12 139.70 -
bSGD 82.92 70.88 122.1
EFSGD 95.28 71.13 0
ConEF 60% 96.00 72:11 76.2
ConEF 90% 95.23 71.98 101.5

« ConkEF is more suitable for larger models
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Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

Gradient compressor: random block k (90% reduced comm.)

Error compressor: count sketch

2-layer LSTM on WikiText-2

140 1 SGD
rbSGD
EFSGD
130 1 ConEF-CS 60%
Algorithm | perplexity | runtime (hour) | memory saving (MB) *g - e
SGD 97.72 7.57 - 5
bSGD 120.07 1.45 262.5 9116
EFSGD 98.29 1.49 0
ConEF 60% 97.76 1.51 180.3 100
ConEF 80% 98.59 1.50 220.2

0 5000 10000 15000 20000 25000
runtime (s)
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Step 2: ConEF for Adam type optimizers

A small transformer for machine translation on Multi30K

6
e Adam 40 e Adam
e rh-Adam we rh-Adam
5 s EF-Adam e EF-Adam
v ConEF-CS 60% - s ConEF-CS 60%
s CONEF-CS 90% & ' s CONEF-CS 90%
4 - )
0 S
("]
o c
c 2 3.0
.é - _rg
= T
>
2.5 -
2 .
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epoch epoch
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Step 2: ConEF with Adam type optimizers

* 4 Amazon p3.16xlarge instances (32 GPUs in total)

e Gradient compressor: random block k (95% reduced comm.)

* Error compressor: count sketch

 BERT-BASE pretraining (not completed yet)

Algorithm out of memory | Phase I loss | Phase Il loss | runtime (hour)
LAMB No ~1.62 40.2 +
EF-LAMB Yes - -
EF-LAMB (mix precision) No ~1.76 37.6 +
ConEF 80% No ~1.79 38.1 +

* Possible reasons for performance gap:

© 2021, Amazon Web Services, Inc. or its Affiliates.
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Step 2: ConEF with Adam type optimizers

 BERT-BASE downstream tasks (not completed yet)
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Roadmap

1 Distributed training for large models redux
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Rethinking distributed training for NLP
1 Current distributed training paradigm targets consensus
« Communication of stochastic gradients is essential for reaching consensus
* Q:is consensus necessary
* Amazon, Google, and NVIDIA have their own pretrained BERT

* Q: What and how to communicate if consensus in not the ultimate goal

BERT Pretraining

2 2

e
[ )

Figure from https://towardsdatascience.com/how-to-train-bert-aaad00533168
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Rethinking distributed training for NLP

d In the old days (ADMM, gossip)

* Not enough data, strongly convex problem (hence unique solution)
d In the present ... nonuniqueness seems to be necessary

 Data explosion, highly nonconvex losses with various local minima

Multiple manners to translate a specific sentence

e Q:is asingle function enough

* Q: How can we take advantage of models converging to different local minima

dWs
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https://github.com/NVIDIA/nvcomp
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