dWs$s

Contractive error feedback for
gradient compression

Bingcong Li, Shuai Zheng, Parameswaran Raman, and Anshumali Shrivastava

Dec 8 2021

© 2021, Amazon Web Services, Inc. or its Affiliates. <>

LN

Roadmap

d Motivation and project overview

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

After transformers, neural networks are getting out of control

- [

BERT-LARGE (2018) GPT-2 (2019) MEGATRON-LM (2019) T5 (2019) T-NLG (2020)

parameters in billion

* Memory issues: model does not fit into a GPU such as V100 (16 or 32 GB memory)
 Runtime issues: training requires a few days if not weeks

* Memory is a dimension that is largely ignored in communication efficient methods

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWS

ZeRO3 increases communication overhead

d Memory: ZeRO3 partitions parameters / gradients / optimizer states

M, M,
Datao llllllllllllll ’ Datal llllllllllllll ¥
HE BHE Datao llllllllllllll § Datal llllllllllllll i
GPU, GPU,
GPU, GPU,
M, M,
Dataz llllllllllllll) Data3 llllllllllllll ¥
BE BE Dataz llllllllllllll i Dat33 |||||||||||||| ¥
GPU, GPU,4
GPU, GPU;
Each cell © represents GPU memory used by its corresponding transformer layer Each GPU is responsible for 1 piece of the end model

ZeRO P,.,., and Gradient accumulation are used with the 4-way data parallelism

 Communication: ZeRO3 increases communication overhead by 50% to save memory

* @Goal: understanding the memory and communication tradeoff

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

How to reduce the communication overhead for ZeRO3

EFSGD
- model 1: Initialize: xo € R% ey = 0 € R%, 7
2: fort=0,1,..., T — 1do
- gra dient 3: assert x; = xﬁ for every worker
4: for worker ¢ in parallel do
5: pi = ngi + e
6: Al = Q(pi) |
7: A, = Aggregate(Aj, Vi)
. . 8: X't+1 - X? o At
optimizer 9: gl =ph—Al
10: end for
11: end for
© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

\/‘7

Communication

Memory - communication tradeoff in ZeRO

3\1}
2\1} Y ——
1.2Q |||IIII||||||IIII|E||||I; llllllllllllllll E‘lll

Conkr:-ZeRO3
EF;ZeR0O3....

Memory on a single GPU

© 2021, Amazon Web Services, Inc. or its Affiliates.

How to get to

Step 1: algorithm design

Step 2: test with adam

Step 3: integrate to ZeRO3

dWs

Roadmap

J Algorithm design

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Communication bottleneck

(1 Communication time increases with workers [VKM’ 19]

m Forward pass, m Backward pass, m Gradient exchange, @ Encoding and decoding.

2 workers 4 workers 8 workers 16 workers
Rank 2 7 | 77 e e
SGD | s | | A . 200
Signum | A - | mn .,

J Efficient communication reduces idle time

SGD Compressed SGD

Computation oW

Communication

. . encode and
encode and comm. comm.
P

time time
© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

v

Why EF is necessary

- localerror
- model
- gradient

optimizer

J Local SGD [Stich’ 19]
e Communicate every a few iterations

* Infeasible for ZeRO3 since optimizer states are partitioned

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWS

Why EF is necessary

100
e SGD
e DS GD
e EFSGD
90 A mes CONEF-CS 60%
~ ConEF-CS 90%
>
O
E 96 -
-]
O 80- — Z%
© 94 4
ﬁ 1 1
3 3500 4000
70 A
60 - T T T T
0 2000 4000 6000 8000
runtime (s)

(d Unbiased gradient compressors [ADGLTV’ 17]

* Enlarged gradient variance hurts performance (e.g., accuracy)

dWS

\/‘7

© 2021, Amazon Web Services, Inc. or its Affiliates.

Contractive error feedback (ConEF)

ConEF EFSGD
1: Inmitialize: xo € R% e} = 0 € R4, Vi, n 1: Initialize: xo € R%, e} = 0 € R, Vi, n
2: fort=0,1,...,7T — 1do 2: fort=0,1,..., T —1do
3: assert x; = x! for every worker i 3: assert x; = x for every worker 4
4: for worker 2 = 1,..., N in parallel do 4: for worker 2 = 1,..., N in parallel do
5: P; = ng; + €} 5: P; = 1g; + €
6 Ai=0Q(pi) 6 Ai=0Q(pi)
7: A; = Aggregate(A}, Vi) 7: A; = Aggregate(A}, Vi)
8: Xt_|_1 = Xt — At . 8: XH_l = X,; — At
9: ;11 = C(p; — AY) 9: €11 = P; — A
10: end for 10: end for
11: end for 11: end for

* Key idea: compressors can be used on local error as well
* Simple operation saves more runtime

* Convergence: ConEF finds the sweet spot of QSGD and EFSGD

* Practicality: depending on which error compressor to use

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Convergence of ConEF

ConEF

1: Inmitialize: xo € RY e}, = 0 € R%, Vi, 7
2: fort=0,1,...,T — 1do

3: assert x; = X for every worker i
4 for worker ¢ = 1,..., N in parallel do
5: P; = ng; + €;
6: At = Q(p}) |
7: A; = Aggregate(A}, Vi)
8: X.t+1 = Xt — At .
9: e;11 = C(p; — A})
10: end for
11: end for

Memory

* Assumption on error compressor E[C(x)] = x and E[||C(x) — x||*] < 0E[||x]*]

* Assumption on gradient compressor 34 € (0,1), s.t. E[||Q(x) — x||?] < dE[||x||*]

© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

Deeper dive into error compressors C

* Assumption on error compressor E[C(x)] = x and E[||C(x) — x||?] < 0E[||x]|*]

* Unbiased C has some generalization merits

100
90 -
>
O
o
- |
O 801
©
g SGD
qSGD
70 - EFSGD
hEFSGD 60%
ConEF-CS 60%
ConEF-CS 90%
60 4= T
0 1000 2000 3000 4000 5000
runtime (s)

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Deeper dive into error compressors C

* Rule of thumb: count sketch [CCF ‘02]

* One can also use e.g., stochastic quantization [ADGLTM’ 17] and its variants

© 2021, Amazon Web Services, Inc. or its Affiliates.

100

O
o

test accuracy

(o0}
o

70 +=

— =1, w=0.6xSize
— y=3, w=0.2xSize

30

60

epoch

90

120

150

dWsS

Deeper dive into error compressors C

a
=1 |
| 1: Initialize: xo € R%,eg =0 € R%, 7
= o 2: fort =0,1,...,7 —1do
a | g 3 assert x; = X for every worker ¢
O ® -3 4 for worker ¢ in parallel do
al 5 p; = ng; + (1 — B)e;
N 6: At = Q(pt) |
e | 7: A; = Aggregate(A}, Vi)
1\0\// = \// 8 Xi+1 = X¢ — Ay |
e20 30 A 10 20 9: €11 = C(Bes + p; — A})
log(i) ! log(i) 11: end for
EFSGD (partial)-EFSGD [AF’ 20]
Table 1: 3 vs. sketch size for convergence
o) 0170210304]05|06]07]08]0.9
smallest sketch size | 0.9 | 0.8 | 0.7 | 0.6 | 04 | 0.4 | 0.3 | 0.2 | 0.1

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWs

Side results on tighter bounds

* Using ConEF on top of ConEF improves the convergence rate theoretically

improved ConEF (iConEF)

1: Initialize: xq, &} = 0,q}, = 0,7

2: fort=0,1,...,T — 1do

3: assert X; = x';' for every worker 7
4: for worker 2 = 1, ..., N in parallel do
5; P: = n8; + €; + q;

6: A; = 9(p;) |

7: A; = Aggregate(A?, Vi)

8: Xi+1 = Xt — Ay

9: if version 1 then: '
10: €11 = C(p; — A})
11: else: . _
12: e, = Q(p; — A})
13: end if . .
14: qi+1 = C(p; — A}
15: end for
16: end for

> 1ConEF-v1

> 1ConEF-v2

© 2021, Amazon Web Services, Inc. or its Affiliates.

95

test accuracy

(00]
()]

80

O
o
L

93.0 1
92.5 1
léO 1;10
EFSGD
ConEF
iConEF-v1
iConEF-v2
30 60 90 120 150

epoch

dWs

Roadmap

1 Numerical experiments

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

e Gradient compressor: random block k (90% reduced comm.)

* Error compressor: count sketch

* ResNetl1l8 on CIFAR-10

Algorithm | test accuracy | runtime (min) | memory saving (MB)
SGD 93.20 54.83 -
bSGD 86.58 40.12 48.2
EFSGD 92.52 40.41 0
ConEF 60% 92.53 42.45 31.5
ConEF 90% 92.02 42.45 44.1

© 2021, Amazon Web Services, Inc. or its Affiliates.

100

test accuracy
[0} O
o o

~
o
L

60

92.51

2200 2400

SGD
rbSGD
EFSGD

ConEF-CS 60%
ConEF-CS 90%

0

500

1000

1500 2000
runtime (s)

2500 3000

dWs

Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

e Gradient compressor: random block k (90% reduced comm.)

* Error compressor: count sketch

* WideResNet-28-10 on CIFAR-10

Algorithm | test accuracy | runtime (min) | memory saving (MB)
SGD 96.12 139.70 -
bSGD 82.92 70.88 122.1
EFSGD 95.28 71.13 0
ConEF 60% 96.00 72:11 76.2
ConEF 90% 95.23 71.98 101.5

« ConkEF is more suitable for larger models

© 2021, Amazon Web Services, Inc. or its Affiliates.

test accuracy

100

90 1

[00]
o
L

70 -

60

96 A

94 ~

SGD

rbSGD

EFSGD
ConEF-CS 60%
ConEF-CS 90%

3500 4000

2000

4000
runtime (s)

6000 8000

dWs

Step 1: ConEF for SGD based optimizers

4 Amazon p3.8xlarge instances (16 GPUs in total)

Gradient compressor: random block k (90% reduced comm.)

Error compressor: count sketch

2-layer LSTM on WikiText-2

140 1 SGD
rbSGD
EFSGD
130 1 ConEF-CS 60%
Algorithm | perplexity | runtime (hour) | memory saving (MB) *g - e
SGD 97.72 7.57 - 5
bSGD 120.07 1.45 262.5 9116
EFSGD 98.29 1.49 0
ConEF 60% 97.76 1.51 180.3 100
ConEF 80% 98.59 1.50 220.2

0 5000 10000 15000 20000 25000
runtime (s)

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Step 2: ConEF for Adam type optimizers

A small transformer for machine translation on Multi30K

6
e Adam 40 e Adam
e rh-Adam we rh-Adam
5 s EF-Adam e EF-Adam
v ConEF-CS 60% - s ConEF-CS 60%
s CONEF-CS 90% & ' s CONEF-CS 90%
4 -)
0 S
("]
o c
c 2 3.0
.é - _rg
= T
>
2.5 -
2 .
11 2.0 - M —
0 5 10 15 20 25 30 0 5 10 15 20 25 30
epoch epoch
(a) train (b) validation
© 2021, Amazon Web Services, Inc. or its Affiliates. aWS

\/‘7

Step 2: ConEF with Adam type optimizers

* 4 Amazon p3.16xlarge instances (32 GPUs in total)

e Gradient compressor: random block k (95% reduced comm.)

* Error compressor: count sketch

 BERT-BASE pretraining (not completed yet)

Algorithm out of memory | Phase I loss | Phase Il loss | runtime (hour)
LAMB No ~1.62 40.2 +
EF-LAMB Yes - -
EF-LAMB (mix precision) No ~1.76 37.6 +
ConEF 80% No ~1.79 38.1 +

* Possible reasons for performance gap:

© 2021, Amazon Web Services, Inc. or its Affiliates.

dWsS

Step 2: ConEF with Adam type optimizers

 BERT-BASE downstream tasks (not completed yet)

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Roadmap

1 Distributed training for large models redux

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Rethinking distributed training for NLP
1 Current distributed training paradigm targets consensus
« Communication of stochastic gradients is essential for reaching consensus
* Q:is consensus necessary
* Amazon, Google, and NVIDIA have their own pretrained BERT

* Q: What and how to communicate if consensus in not the ultimate goal

BERT Pretraining

2 2

e
[)

Figure from https://towardsdatascience.com/how-to-train-bert-aaad00533168

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Rethinking distributed training for NLP

d In the old days (ADMM, gossip)

* Not enough data, strongly convex problem (hence unique solution)
d In the present ... nonuniqueness seems to be necessary

 Data explosion, highly nonconvex losses with various local minima

Multiple manners to translate a specific sentence

e Q:is asingle function enough

* Q: How can we take advantage of models converging to different local minima

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

References

[KRSJ’ 19] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes signsgd and other gradient compression schemes. In Proc. of Intl.
Conf. on Machine Learning, 2019

[ADGLTM’ 17] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, andMilan Vojnovic. QSGD: Communication-efcient sgd via gradient quantization and encoding. Proc. of
Neural Information Processing Systems, 2017

[BWAA'’ 18] Jeremy Bernstein, Yu-XiangWang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signSGD: Compressed optimization for non-convex problems. In Proc. of
Intl. Conf. on Machine Learning, 2018

[Stich’ 19] Sebastian Urban Stich. Local SGD converges fast and communicates little. In Proc. of Intl. Conf. on Learning Representations, 2019.

[VKM’ 19] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient compression for distributed optimization. Proc. of Neural
Information Processing Systems, 2019

[HHHSCR’ 19] Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtarik. Natural compression for distributed deep learning. arXiv
preprint arXiv:1905.10988, 2019.

[WRSSR’ 17] Ashia CWilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal value of adaptive gradient methods in machine learning. In
Proc. of Neural Information Processing Systems, 2017

[Valiant, ‘84] Leslie GValiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984

[RFMAAR’ 21] Ali Ramezani-Kebrya, Fartash Faghri, llyaMarkov, Vitalii Aksenov, Dan Alistarh, and Daniel MRoy. NUQSGD: Provably communication-efcient data-parallel SGD
via nonuniformquantization. Journal of Machine Learning Research, 22(114):1-43, 2021

[nvcomp]

[CCF’ 02] Moses Charikar, Kevin Chen, andMartin Farach-Colton. Finding frequent items in data streams. In International Colloquium on Automata, Languages, and
Programming, Springer, 2002.

[AF 20] Afshin Abdi and Faramarz Fekri. Quantized compressive samplingof stochastic gradients for effcient communication in distributed deep learning. In Proceedings of the
AAAIl Conference on Artifcial Intelligence, 2020 aWS

© 2021, Amazon Web Services, Inc. or its Affiliates.

https://github.com/NVIDIA/nvcomp

~L-

Acknowledgement (alphabetical order)

Vasileios loannidis

George Karypis

Parameswaran Raman

Xingjian Shi

Anshumali Shrivastava

Bo Yang

VAVAVAA

Sheng Zha

Shuai Zheng

70 8

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

Do
Thank you!) L
Q&A NSO
Dl
¢

dWs

© 2021, Amazon Web Services, Inc. or its Affiliates.

