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TL;DR

▶ We propose a subspace cubic regularized Newton method for
convex minimization

▶ The first dimension-independent global rate of O( 1
mk + 1

k2) among
subspace methods, where m is the subspace dimension

▶ Key idea: use the Krylov subspace instead of a random subspace
▶ Empirically, our method with m = 10 outperforms existing

subspace methods in logistic regression problems with d = 106

Cubic Regularized Newton Method

▶ The unconstrained minimization problem
min
x∈Rd

f (x)

• f : Rd→ R is convex
• f is bounded from below and has bounded level-sets
• The Hessian of f is Lipchitz, i.e.,
∥∇2f (x)−∇2f (y)∥ ≤ L2∥x− y∥, ∀x, y ∈ Rd

▶ Let gk := ∇f (xk) and Hk := ∇2f (xk)
▶ Cubic regularized Newton (CRN) [Griewank’81; Nesterov-Polyak’06]

sk = argmin
s∈Rd

{
g⊤k s + 1

2
s⊤Hks + M

6
∥s∥3

}
xk+1 = xk + sk

• f convex: f (xk)− f ∗ = O(1/k2)
• f strongly convex: a superlinear convergence rate

Prior Works: Stochastic Subspace CRN

▶ The drawback of CRN: high memory and computational costs
• Computing & storing the Hessian: O(d2)
• Solving a cubic subproblem: O(d3)

▶ Subspace methods: executing 2nd-order updates in a subspace Vk

of dim m≪ d [Doikov-Richtárik’18; Gower et al.’19; Hanzely et al.’20]

sk = argmin
s∈Vk

{
g⊤k s + 1

2
s⊤Hks + M

6
∥s∥3

}
xk+1 = xk + sk

▶ Implementation: let Vk ∈ Rd×m whose columns form an
orthonormal basis for Vk. Then

zk = argmin
z∈Rm

{
g̃⊤k z + 1

2
z⊤H̃kz + M

6
∥z∥3

}
sk = Vkzk, xk+1 = xk + sk

where g̃k = V⊤k gk ∈ Rm and H̃k = V⊤k HkVk ∈ Rm×m

▶ The existing works choose a random subspace Vk

• Stochastic Subspace Cubic Newton (SSCN) [Hanzely et al.’20]:
A general random subspace satisfying E[VkV⊤k ] = m

d I
▶ Reduced computational costs . . .
• Computing the subspace Hessian: O(m2) in some special cases
• Solving a cubic subproblem: O(m3)

▶ . . . but a much slower convergence rate

O

(
d−m

m
· 1
k

+
(

d

m

)2

· 1
k2

)

Question: Can we improve the dimensional dependence of
subspace second-order methods?

Our Contributions: Krylov CRN

▶ We propose the Krylov CRN method, where Vk is chosen as the
Krylov subspace span{gk, Hkgk, . . . , Hm−1

k gk}
▶ Can be implemented using the Lanczos method, with 1 gradient

evaluation and m Hessian-vector products (HVPs) per iteration
▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate
CRN [Nesterov-Polyak’06] O(d3) O( 1

k2)
SSCN [Hanzely et al.’20] O(m3)∗ O(d−m

m · 1
k + d2

m2 · 1
k2)

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2)
∗Assume computing the subspace gradient is O(m) and the subspace Hessian is O(m2)
∗∗Assume the cost of Hessian-vector product evaluations is O(d)

▶ When the Hessian spectrum possesses a certain structure, our
method achieves a faster rate

Krylov CRN

▶ Input: Initial point x0 ∈ Rd, subspace dimension m,
regularization parameter M > 0

▶ for k = 0, 1, . . . , do
• (Vk, g̃k, H̃k)← Lanczos(Hk, gk; m)
• Solve the cubic subproblem

zk = argmin
z∈Rm

{
g̃⊤k z + 1

2
z⊤H̃kz + M

6
∥z∥3

}
,

• Update xk+1 = xk + Vkzk

▶ end for

▶ Per-iteration computational cost
• Lanczos iteration: m HVPs ⇒ O(md)
• Solving the cubic subproblem: O(m)

(V, g̃, H̃) = Lanczos(H, g; m)

▶ Input: H ∈ Rd×d, g ∈ Rd, and the dimension m

▶ Initialize: v1 = g/∥g∥, β1 = 0, v0 = 0
▶ for j = 1, 2, . . . , m do
•wj ← Hvj − βjvj−1 // one Hessian-vector product (HVP)
• αj ← w⊤j vj

•wj ← wj − αjvj

• βj+1← ∥wj∥2
• vj+1← wj/βj+1

▶ end for

▶ Output: V=[v1, . . . , vm], g̃ =∥g∥e1, H̃ =


α1 β2
β2 α2 β3

β3
... ...
... ... βm−1

βm−1 αm−1 βm

βm αm



Convergence Analysis

▶ Key inequality in the analysis of classical CRN:

f (xk+1) ≤ f (xk) + g⊤k s + 1
2
s⊤Hks + L2

6
∥s∥3, ∀s ∈ Rd

▶ For subspace CRN, we instead have

f (xk+1) ≤ f (xk) + g⊤k s + 1
2
s⊤Hks + L2

6
∥s∥3, ∀s ∈ Vk

Key Lemma
Suppose Hk ⪯ L1I and Let {xk} be generated by Krylov CRN
with subspace dim m. We have

f (xk+1) ≤ f (xk)+g⊤k s+1
2
s⊤Hks+L2

6
∥s∥3+ L1

2m
∥s∥2, ∀s ∈ Rd

▶ The additional error term is independent of d

▶ It diminishes as m increases

Main Results

Theorem (Convex Setting)
Let {xk} be generated by Krylov CRN. Then we have

f (xk)− f ∗ ≤ 9L1D
2

2mk
+ 9L2D

3

k2

▶ Achieving accuracy ϵ requires O
(

1
mϵ + 1√

ϵ

)
iterations

▶ In comparison, SSCN [Hanzely et al.’20] requires O(d−m
m · 1

ϵ + d
m ·

1√
ϵ
)

▶ When m≪ d, our complexity is lower by a factor of d

Theorem (Strongly Convex Setting)
Let {xk} be generated by Krylov CRN. Then the number of itera-
tions needed to reach δk :=f (xk)− f (x∗)≤ϵ is upper bounded by

k = O

((
L1

mµ
+ 1
)

log δ0

ϵ
+
√

L2δ
0.25
0

µ0.75

)

▶ In comparison, SSCN requires O
((

d−m
m

L1
µ + d

m

)
log 1

ϵ

)
▶ Again, when m≪ d, we shave a factor of d

Hessian Eigenspectrum

▶ The presented bounds rely on L1, the Hessian’s largest eigenvalue
▶ A more refined analysis: we can replace L1 by

ρ(m)
max := max

i∈{0,1,...,k−1}
{ρ(m)(Hi, gi)},

where

ρ(m)(H, g) = min
c0,...,cm−1∈R

∥∥∥∥∥Hm g

∥g∥
−

m−1∑
i=0

ciHi g

∥g∥

∥∥∥∥∥
1
m

▶ For a monic polynomial p(x) = xm −
∑m−1

i=0 cix
i, define

p(H) = Hm −
∑m−1

i=0 ciHi

▶ LetMm be the set of monic polynomials of degree m. Then

ρ(m)(H, g) = min
p∈Mm

∥∥∥∥p(H) g

∥g∥

∥∥∥∥ 1
m

≤ min
p∈Mm

∥p(H)∥
1
m

▶ Assume that the Hessian H has r distinct eigenvalues in
decreasing order: λ1 > λ2 > · · · > λr

▶ Then
ρ(m)(H, g) ≤ min

p∈Mm

max
i∈{1,2,...,r}

|p(λi)|
1
m

▶ Example I: ρ(m)(H, g) ≤
(∏m

i=1 λi

) 1
m when m ≤ r

• If the rank of Hessian ≤ m− 1, then ρ(m)(H, g) = 0

▶ Example II: Assume that all the eigenvalues of H lie within
[0, ∆] ∪ [L1 −∆, L1] for some L1 > ∆ > 0. When m is even,

ρ(m)(H, g) ≤ 21/m
√

∆(L1 −∆)/2

Logistic Regression Problems

Plot by iteration: Plot by time:
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▶ In terms of iterations:
• The convergence path of Krylov CRN remains almost unchanged

as d increases from 300 to 106

• SSCN converges slower as d increases

▶ In terms of time:
• As d increases, the gap between Krylov CRN and other methods

becomes wider
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