Krylov Cubic Regularized Newton: A Subspace Second-Order Method with **Dimension-Free Convergence Rate**

Ruichen Jiang UT Austin	Parameswaran Raman AWS	Shoham Sabach Technion & AWS	Aryan Mokhtari UT Austin	Mingyi Hong UMN & AWS	Volkan Cevher EPFL & AWS
TL;DR		Krylov CRN		Hessian Eigenspectrum	
 We propose a subspace cubic regularized convex minimization The first dimension-independent global subspace methods, where <i>m</i> is the subspace methods, where <i>m</i> is the subspace institute. Key idea: use the Krylov subspace institute. Empirically, our method with <i>m</i> = 10 subspace methods in logistic regression. 	and rate of $O(\frac{1}{mk} + \frac{1}{k^2})$ among bspace dimension tead of a random subspace outperforms existing n problems with $d = 10^6$	 Input: Initial point x₀ ∈ ℝ^d, subspace dimension m, regularization parameter M > 0 for k = 0, 1,, do (V_k, ğ_k, H _k) ← LANCZOS(H_k, g_k; m) Solve the cubic subproblem z_k = argmin z∈ℝ^m { ğ_k^T z + 1/2 z^T H _k z + M/6 z ³ }, 		► The presented bounds rely on L_1 , the Hessian's largest eigenvalue ► A more refined analysis: we can replace L_1 by $ \rho_{\max}^{(m)} := \max_{i \in \{0,1,\dots,k-1\}} \{\rho^{(m)}(\mathbf{H}_i, \boldsymbol{g}_i)\}, $ where $ \rho^{(m)}(\mathbf{H}, \boldsymbol{g}) = \min_{c_0,\dots,c_{m-1} \in \mathbb{R}} \left\ \mathbf{H}^m \frac{\boldsymbol{g}}{\ \boldsymbol{g}\ } - \sum_{i=0}^{m-1} c_i \mathbf{H}^i \frac{\boldsymbol{g}}{\ \boldsymbol{g}\ } \right\ ^{\frac{1}{m}} $	
Cubic Regularized Newton MethodThe unconstrained minimization problem $\min_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x})$		 Update x_{k+1} = x_k + V_kz_k ► end for Per-iteration computational cost Lanczos iteration: m HVPs ⇒ O(md) Solving the cubic subproblem: O(m) 		 For a monic polynomial p(x) = x^m - ∑_{i=0}^{m-1} c_ixⁱ, define p(H) = H^m - ∑_{i=0}^{m-1} c_iHⁱ Let M_m be the set of monic polynomials of degree m. Then ρ^(m)(H, g) = min p∈M_m p(H) g/ ^{1/m} ≤ min p(H) ^{1/m} 	

- *f* : ℝ^w → ℝ is convex *f* is bounded from below and has bounded level-sets • The Hessian of f is Lipchitz, i.e., $\|
 abla^2 f(oldsymbol{x}) -
 abla^2 f(oldsymbol{y})\| \leq L_2 \|oldsymbol{x} - oldsymbol{y}\|$, $orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^d$
- ► Let $\boldsymbol{g}_k := \nabla f(\boldsymbol{x}_k)$ and $\mathbf{H}_k := \nabla^2 f(\boldsymbol{x}_k)$ Cubic regularized Newton (CRN) [Griewank'81; Nesterov-Polyak'06] $\boldsymbol{s}_{k} = \operatorname*{argmin}_{\boldsymbol{s} \in \mathbb{R}^{d}} \left\{ \boldsymbol{g}_{k}^{\top} \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^{\top} \mathbf{H}_{k} \boldsymbol{s} + \frac{M}{6} \|\boldsymbol{s}\|^{3} \right\}$ $oldsymbol{x}_{k+1} = oldsymbol{x}_k + oldsymbol{s}_k$
- f convex: $f(\boldsymbol{x}_k) f^* = \mathcal{O}(1/k^2)$
- *f* strongly convex: a superlinear convergence rate

Prior Works: Stochastic Subspace CRN

- ► The drawback of CRN: high memory and computational costs
- Computing & storing the Hessian: $\mathcal{O}(d^2)$
- Solving a cubic subproblem: $\mathcal{O}(d^3)$
- Subspace methods: executing 2nd-order updates in a subspace \mathcal{V}_k of dim $m \ll d$ [Doikov-Richtárik'18; Gower et al.'19; Hanzely et al.'20]

$$\boldsymbol{s}_{k} = \operatorname*{argmin}_{\boldsymbol{s} \in \boldsymbol{\mathcal{V}}_{k}} \left\{ \boldsymbol{g}_{k}^{\top} \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^{\top} \mathbf{H}_{k} \boldsymbol{s} + \frac{M}{6} \|\boldsymbol{s}\|^{3} \right\}$$
$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} + \boldsymbol{s}_{k}$$

▶ Implementation: let $\mathbf{V}_k \in \mathbb{R}^{d \times m}$ whose columns form an orthonormal basis for \mathcal{V}_k . Then

$$\boldsymbol{z}_{k} = \operatorname*{argmin}_{\boldsymbol{z} \in \mathbb{R}^{m}} \left\{ \tilde{\boldsymbol{g}}_{k}^{\top} \boldsymbol{z} + \frac{1}{2} \boldsymbol{z}^{\top} \tilde{\boldsymbol{H}}_{k} \boldsymbol{z} + \frac{M}{6} \|\boldsymbol{z}\|^{3} \right\}$$

 $(\mathbf{V}, \tilde{\boldsymbol{g}}, \tilde{\mathbf{H}}) = \text{Lanczos}(\mathbf{H}, \boldsymbol{g}; m)$ **▶ Input:** $\mathbf{H} \in \mathbb{R}^{d \times d}$, $\boldsymbol{g} \in \mathbb{R}^{d}$, and the dimension m► Initialize: $v_1 = g/||g||$, $\beta_1 = 0$, $v_0 = 0$ ▶ for j = 1, 2, ..., m do // one Hessian-vector product (HVP) • $\boldsymbol{w}_{j} \leftarrow \mathbf{H} \boldsymbol{v}_{j} - \beta_{j} \boldsymbol{v}_{j-1}$ • $\alpha_i \leftarrow \boldsymbol{w}_i^\top \boldsymbol{v}_i$ • $\boldsymbol{w}_i \leftarrow \boldsymbol{w}_i - \alpha_i \boldsymbol{v}_i$ • $\beta_{j+1} \leftarrow \| \boldsymbol{w}_j \|_2$ • $\boldsymbol{v}_{j+1} \leftarrow \boldsymbol{w}_j / \beta_{j+1}$ $\bullet \text{ output: } \mathbf{V} = [\boldsymbol{v}_1, \dots, \boldsymbol{v}_m], \ \tilde{\boldsymbol{g}} = \|\boldsymbol{g}\|\boldsymbol{e}_1, \ \tilde{\mathbf{H}} = \begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \beta_3 \\ \beta_3 & \ddots & \ddots \\ & \beta_3 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{m-1} \\ & & & \beta_{m-1} & \alpha_{m-1} & \beta_m \\ & & & & \beta_m & \alpha_m \end{bmatrix}$

 \blacktriangleright Assume that the Hessian H has r distinct eigenvalues in decreasing order: $\lambda_1 > \lambda_2 > \cdots > \lambda_r$ ► Then

 $\rho^{(m)}(\mathbf{H}, \boldsymbol{g}) \leq \min_{p \in \mathcal{M}_m} \max_{i \in \{1, 2, \dots, r\}} |p(\lambda_i)|^{\frac{1}{m}}$

Example I: $\rho^{(m)}(\mathbf{H}, \boldsymbol{g}) \leq \left(\prod_{i=1}^{m} \lambda_i\right)^{\frac{1}{m}}$ when $m \leq r$ • If the rank of Hessian $\leq m-1$, then $\rho^{(m)}(\mathbf{H}, \boldsymbol{g}) = 0$

Example II: Assume that all the eigenvalues of **H** lie within $[0,\Delta] \cup [L_1 - \Delta, L_1]$ for some $L_1 > \Delta > 0$. When m is even, $\rho^{(m)}(\mathbf{H}, \boldsymbol{g}) \leq 2^{1/m} \sqrt{\Delta(L_1 - \Delta)}/2$

Convergence Analysis

```
► Key inequality in the analysis of classical CRN:
               f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + \boldsymbol{g}_k^{\top} \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^{\top} \mathbf{H}_k \boldsymbol{s} + \frac{L_2}{6} \|\boldsymbol{s}\|^3, \quad \forall \boldsymbol{s} \in \mathbb{R}^d
► For subspace CRN, we instead have
                 f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + \boldsymbol{g}_k^{\top} \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^{\top} \mathbf{H}_k \boldsymbol{s} + \frac{L_2}{6} \|\boldsymbol{s}\|^3, \quad \forall \boldsymbol{s} \in \boldsymbol{\mathcal{V}}_k
```

Logistic Regression Problems Plot by time: Plot by iteration: w8a (*n* = 49749, *d* = 300) w8a (*n* = 49749, *d* = 300) --- CRN SSCN (m = 10) SSCN (m = Krylov CRN (m = 1

$\boldsymbol{s}_k = \boldsymbol{V}_k \boldsymbol{z}_k, \quad \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$ where $\tilde{\boldsymbol{g}}_k = \mathbf{V}_k^\top \boldsymbol{g}_k \in \mathbb{R}^m$ and $\tilde{\mathbf{H}}_k = \mathbf{V}_k^\top \mathbf{H}_k \mathbf{V}_k \in \mathbb{R}^{m \times m}$

- \blacktriangleright The existing works choose a random subspace \mathcal{V}_k
 - Stochastic Subspace Cubic Newton (SSCN) [Hanzely et al.'20]: A general random subspace satisfying $\mathbb{E}[\mathbf{V}_k\mathbf{V}_k^{\top}] = \frac{m}{d}\mathbf{I}$
- ► Reduced computational costs
- Computing the subspace Hessian: $\mathcal{O}(m^2)$ in some special cases
- Solving a cubic subproblem: $\mathcal{O}(m^3)$
- ► ... but a much slower convergence rate

 $\mathcal{O}\left(rac{d-m}{m}\cdotrac{1}{k}+\left(rac{d}{m}
ight)^2\cdotrac{1}{k^2}
ight)$

Question: Can we improve the dimensional dependence of subspace second-order methods?

Our Contributions: Krylov CRN

- We propose the Krylov CRN method, where \mathcal{V}_k is chosen as the Krylov subspace span $\{g_k, H_kg_k, \ldots, H_k^{m-1}g_k\}$
- ► Can be implemented using the Lanczos method, with 1 gradient evaluation and m Hessian-vector products (HVPs) per iteration In the convex case, we prove a dimension free convergence rate

- \blacktriangleright The additional error term is independent of d
- \blacktriangleright It diminishes as m increases

Main Results

Theorem (Convex Setting)

Let $\{x_k\}$ be generated by Krylov CRN. Then we have $f(\boldsymbol{x}_k) - f^* \le \frac{9L_1D^2}{2mk} + \frac{9L_2D^3}{k^2}$

- Achieving accuracy ϵ requires $\mathcal{O}\left(\frac{1}{m\epsilon} + \frac{1}{\sqrt{\epsilon}}\right)$ iterations
- ► In comparison, SSCN [Hanzely et al.'20] requires $\mathcal{O}(\frac{d-m}{m} \cdot \frac{1}{\epsilon} + \frac{d}{m} \cdot \frac{1}{\sqrt{\epsilon}})$
- When $m \ll d$, our complexity is lower by a factor of d

Theorem (Strongly Convex Setting)

► In terms of iterations:

- CRN

→ SSCN (m = 50) SSCN (m = 100) SSCN (m = 500)

• The convergence path of Krylov CRN remains almost unchanged as d increases from 300 to 10^6

In the convex case, we prove a dimension-free convergence rate					
Methods	Per-iteration cost	Convergence rate			
CRN [Nesterov-Polyak'06]	${\cal O}(d^3)$	$\mathcal{O}(rac{1}{k^2})$			
SSCN [Hanzely et al.'20]	${\cal O}(m^3)^*$	$\mathcal{O}(rac{d-m}{m}\cdotrac{1}{k}+rac{d^2}{m^2}\cdotrac{1}{k^2})$			
Krylov CRN (ours)	$\mathcal{O}(md)^{**}$	$\mathcal{O}(rac{1}{mk}+rac{1}{k^2})$			

*Assume computing the subspace gradient is $\mathcal{O}(m)$ and the subspace Hessian is $\mathcal{O}(m^2)$ **Assume the cost of Hessian-vector product evaluations is $\mathcal{O}(d)$

► When the Hessian spectrum possesses a certain structure, our method achieves a faster rate

•• ____

Let $\{x_k\}$ be generated by Krylov CRN. Then the number of iterations needed to reach $\delta_k := f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) \leq \epsilon$ is upper bounded by $k = \mathcal{O}\left(\left(\frac{L_1}{m\mu} + 1\right)\log\frac{\delta_0}{\epsilon} + \frac{\sqrt{L_2}\delta_0^{0.25}}{\mu^{0.75}}\right)$

► In comparison, SSCN requires $\mathcal{O}\left(\left(\frac{d-mL_1}{m}+\frac{d}{m}\right)\log\frac{1}{\epsilon}\right)$ • Again, when $m \ll d$, we shave a factor of d

• SSCN converges slower as d increases

► In terms of time:

• As d increases, the gap between Krylov CRN and other methods becomes wider

Take a picture to download the full paper

