

MADA: Meta-Adaptive Optimizers through Hyper-gradient Descent

Kaan Ozkara Applied Scientist Intern

Work done in collaboration with:

Can Karakus, Parameswaran Raman, Mingyi Hong, Shoham Sabach, Branislav Kveton, Volkan Cevher

Outline

- 1. Background on optimizers
- 2. Parameterized optimizers
- 3. MADA: Meta-Adaptive Optimizers
- 4. AVGrad
- 5. Experiments
- 6. Future work

Problem

 $\min_{x\in R^d}F(x)$

- *F* is differentiable.
- There exists $f: \mathbb{R}^d \to \mathbb{R}$ a random function computed on minibatch sampled from underlying data distribution such that E[f(x)] = F(x) for all x.
- First order optimization methods are the workhorse in modern deep learning.

Overview of Adaptive moment optimizers

$$\gamma_{t} = \begin{cases} 1, \quad \text{LANS, LARS, LAMB} \\ y_{t} = \begin{cases} 1, \quad \text{LANS, LARS, LAMB} \end{cases}$$

$$w_{t} = \begin{cases} \beta_{2}v_{t-1} + (1 - \beta_{2}) g_{t}^{2}, \quad \text{NADAM, ADAM, LAMB} \\ v_{t-1} - (1 - \beta_{2}) sign(v_{t-1} - g_{t}^{2}) g_{t}^{2}, \quad \text{YOGI} \\ \beta_{2}v_{t-1} + (1 - \beta_{2}) g_{t}^{2} / ||g_{t}||^{2}, \quad \text{LANS} \\ \beta_{2}v_{t-1} + (1 - \beta_{2}) g_{t}^{2} / ||g_{t}||^{2}, \quad \text{LANS} \\ \beta_{2}v_{t-1} + (1 - \beta_{2}) (g_{t} + \beta_{1} (g_{t} - g_{t-1}))^{2}, \quad \text{ADAN} \end{cases}$$

$$m_{t+1} = \beta_{1}m_{t} + (1 - \beta_{1}) \tilde{g}_{t}, \qquad \tilde{m}_{t+1} = \begin{cases} m_{t+1}, & \text{ADAN, ADAM, YOGI} \\ \frac{||x_{t}||}{||m_{t}+1|} + m_{t+1}|} & \text{LARS} \\ \frac{||x_{t}||}{||m_{t}+1| + \lambda x_{t}||} (\alpha_{t}m_{t+1} + \lambda x_{t}), & \text{LAMB} \\ \frac{\beta_{1}||x_{t}|(\alpha_{t}m_{t+1} + \lambda x_{t})}{||\alpha_{t}m_{t+1} + \lambda x_{t}||} + \frac{(1 - \beta_{1})||x_{t}||(\alpha_{t}g_{t} + ||g_{t}||\lambda x_{t})|}{||\alpha_{t}g_{t} + ||g_{t}||\lambda x_{t}||}, \quad \text{LANS} \\ \beta_{1}m_{t+1} + (1 - \beta_{1}) g_{t}, & \text{NADAM} \end{cases}$$

$$\tilde{g}_{t} = \begin{cases} g_{t}, & \text{NADAM, ADAM, YOGI, LAMB} \\ \frac{g_{t}}{||x_{t}||}, & \text{LANS} \\ \frac{g_{t}}{||x_{t}||}, & \text{LANS} \end{cases}$$

 $g_t + \beta_1 \left(g_t - g_{t-1} \right), \quad \text{ADAN}$

 $\int \alpha_t$, NADAM, ADAN, ADAM, YOGI

Motivation for a unified optimizer

Different optimizers perform better in different tasks, Adam remains the most popular esp. for LLMs.

A Unified Framework for Adaptive Optimizers

$$x_t = x_{t-1} - \alpha_t \frac{m_t}{\sqrt{v_t} + \epsilon},$$

Table 1 A unified framework to express adaptive moment optimizers.

Method	First-Order Moment	Second-Order Moment
Adam Kingma and Ba, 2015	$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$	$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$
AMSGrad [Reddi et al., 2018]	$m_t = \beta_1 m_{t-1} + (1-\beta_1)g_t$	$ar{v}_t = eta_2 ar{v}_{t-1} + (1-eta_2) g_t^2 \ v_t = \max\{v_{t-1}, ar{v}_t\}$
Adan [Xie et al., 2023]	$\bar{m}_t = \beta_1 \bar{m}_{t-1} + (1 - \beta_1) g_t$ $n_t = \beta_3 n_{t-1} + (1 - \beta_3) (g_t - g_{t-1})$ $m_t = \bar{m}_t + \beta_3 n_t$	$\hat{g}_t = g_t + eta_3(g_t - g_{t-1}) \ v_t = eta_2 v_{t-1} + (1 - eta_2) \hat{g}_t^2$
Yogi Zaheer et al., 2018	$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$	$\hat{g}_t = v_{t-1} + g_t^2 \cdot \operatorname{sign}(g_t^2 - v_{t-1})$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \hat{g}_t$

Parameterized Optimizers

Existing Optimizers

Parameterization

Parameterized Optimizer

Informally, a parameterized optimizer can be described as the convex hull of a set of optimizers, when mapped to a Euclidean space under a certain parameterization.

We introduce interpolation coefficients that is restricted between 0 and 1.

Parameterized Optimizers

First order moment:

$$ar{m}_t = eta_1 ar{m}_{t-1} + (1 - eta_1) g_t$$

 $n_t = eta_3 n_{t-1} + (1 - eta_3) (g_t - g_{t-1})$
 $m_t = ar{m}_t + eta_3 n_t,$

Second order moment:

$$\begin{split} \hat{g}_t &= g_t + \beta_3 (g_t - g_{t-1}) \\ \tilde{g}_t^2 &= c \hat{g}_t^2 + (1 - c) (v_{t-1} + \hat{g}_t^2 \cdot \operatorname{sign}(\hat{g}_t^2 - v_{t-1})) \\ \tilde{v}_t &= \beta_2 \tilde{v}_{t-1} + (1 - \beta_2) \tilde{g}_t^2 \\ v_t^{(max)} &= \max\{v_{t-1}^{(max)}, \tilde{v}_t\} \\ v_t &= \rho \tilde{v}_t + (1 - \rho) v_t^{(max)}. \end{split}$$

Particular optimizers can be obtained through setting coefficients:

- ADAM: $\beta_3 = 0, c = 1, \rho = 1$
- Adan: $c = 1, \rho = 1$
- AMSGrad: $\beta_3 = 0, c = 1, \rho = 0$
- YOGI: $\beta_3 = 0, c = 0, \rho = 1$

Meta-Adaptive Optimizers

How to learn parameters of parameterized optimizers?

Algorithm 1 Pseudocode for a generic MADA Input: A parameterized optimizer \mathcal{O}_q , where $q \in \mathcal{D}$, a hyper-learning rate α , number of total iterations T. Init.: x_0 and q_0 .

- 1: for t=1 to T do
- 2: Sample f_t .
- 3: Update the model parameters:

$$x_t = \mathcal{O}_{q_{t-1}}(x_{t-1}).$$

4: Update the optimizer coefficients:

$$q_t = \Pi_{\mathcal{D}} \left[q_{t-1} - lpha
abla_q f_t(x_{t-1})
ight].$$

5: end for

Output: Model wights x_T .

 \mathcal{O}_q denotes the parameterized optimizer with parameter set q, \mathcal{D} denotes the domain of the parameters.

Hyper-gradient descent

 To compute the hyper-gradient of the loss with respect to a particular optimizer coefficient, we treat the updated model weights as a function of the coefficient (Baydin, 2018). For example consider ρ,

$$\frac{\partial f_{t+1}(x_t)}{\partial \rho} = \frac{\partial f_{t+1}(x_t)}{\partial x_t} \cdot \frac{\partial x_t}{\partial v_t} \cdot \frac{\partial v_t}{\partial \rho}$$

$$= \frac{\partial f_{t+1}(x_t)}{\partial x_t} \cdot \frac{\partial (x_{t-1} - \alpha_t \frac{m_t}{\sqrt{v_t + \epsilon}})}{\partial v_t} \cdot \frac{\partial v_t}{\partial \rho}$$

$$= \frac{\partial f_{t+1}(x_t)}{\partial x_t} \cdot \frac{\alpha_t m_t}{2\sqrt{v_t}(\sqrt{v_t + \epsilon})^2} \cdot \left(\tilde{v}_t - v_t^{(max)}\right)$$
Already computed Manually compute? Manually compute?

Hyper-gradient descent

$$\frac{\partial w_{i}}{\partial \beta_{1i}} = -\frac{\alpha_{i} \left(-\frac{\partial f(w_{i-1})}{\partial w_{i-1}} + m_{i-1} + i\beta_{1i} \stackrel{(i-1)}{,} \hat{m}_{i}\right)}{\left(1 - \beta_{1i} \stackrel{i}{,}\right) \left(\epsilon_{i} + \sqrt{\hat{v}_{i}}\right)}$$

AVGrad

• AMSGrad was proposed by (Reddi, 2018) to prevent increasing effective learning rate in ADAM, which results in non-vanishing terms in the convergence bounds for ADAM.

• However, it performs worse than ADAM, in general, in practice.

AVGrad

- AMSGrad within MADA decreases the performance. We conjecture the performance drop due to AMSGrad might be because of maximum operator that may block the flow of hyper-gradients.
- We replaced the maximum operator with averaging, observed better performance and remedies the issues addressed by AMSGrad.

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ \bar{v}_t &= \beta_2 \bar{v}_{t-1} + (1 - \beta_2) g_t^2 \\ \tilde{v}_t &= \frac{1}{t} (\bar{v}_t + (t - 1) \tilde{v}_{t-1}), \quad \text{replaced max operator} \\ v_t &= \tilde{v}_t, \end{split}$$

AVGrad and an Interpolated Optimizer

$$m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})g_{t}$$
$$\bar{v}_{t} = \beta_{2}\bar{v}_{t-1} + (1 - \beta_{2})g_{t}^{2}$$
$$\tilde{v}_{t} = \frac{1}{t}(\bar{v}_{t} + (t - 1)\tilde{v}_{t-1}),$$
$$v_{t} := \rho_{t}\bar{v}_{t} + (1 - \rho_{t})\tilde{v}_{t}$$

Proposition 1. The following inequality is a sufficient condition for non-increasing effective learning rate:

$$\rho_t \le \frac{1}{t(1-\beta_2)+1}.$$

The interpolated optimizer solves the non-increasing learning rate issue as long as the condition holds.

Convergence of the Interpolated Optimizer

Theorem 1 (Convergence of interpolation of AVGrad and Adam without momentum). Under the assumptions above and $\alpha_t = \frac{\alpha}{\sqrt{t}}$ for some $\alpha > 0$, and for $\rho_t = \frac{\rho}{t}$ for a constant ρ :

$$G_T \le E(T) \left[\frac{C_1}{T} + \frac{C_2 \ln \left(E(T) \right)}{T} + C_3 \left[\ln \left(\frac{\rho}{\beta_2} \right) \right]_+ \right]$$

where,
$$G_T = \frac{1}{T} \sum_{t=1}^T \|\nabla F(x_t)\|^2$$
, $E(T) = \frac{\sqrt{\rho + (1-\rho)T}}{\sqrt{1-\beta_2}}$,
and C_1, C_2, C_3 are constants independent of T, ρ, β_2 .

- GPT-2 (124M, 355M) training on OpenWebText; validation on OpenWebText, Lambada, Wikitext next token prediction.
- Tiny GPT-2 (10M) training on Shakespeare dataset for next character prediction,
- Overall parameterization:

ADAM, Adan, AVGrad, YOGI, LION

Parameterization

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ n_t &= \beta_3 n_{t-1} + (1 - \beta_3) (g_t - g_{t-1}) \\ m_t^{lion} &= \beta_2^{lion} m_{t-1}^{lion} + (1 - \beta_2^{lion}) g_t \\ u_t &= \beta_1^{lion} m_{t-1}^{lion} + (1 - \beta_1^{lion}) g_t, \\ \hat{g}_t &= g_t + \beta_3 (g_t - g_{t-1}) \\ \tilde{g}_t^2 &= c_{t-1} \hat{g}_t^2 + (1 - c_{t-1}) (\bar{v}_{t-1} + \hat{g}_t^2 \operatorname{sign}(\hat{g}_t^2 - \bar{v}_{t-1})) \\ \bar{v}_t &= \beta_2 \bar{v}_{t-1} + (1 - \beta_2) \tilde{g}_t^2 \\ \tilde{v}_t &= (\bar{v}_t + (t - 1) \tilde{v}_{t-1}) / t \\ v_t &= \rho \bar{v}_t + (1 - \rho) \tilde{v}_t \\ x_{t-1} &= x_{t-1} - \lambda \alpha_t x_{t-1} \\ x_t &= x_{t-1} - \alpha_t \Big(\gamma \frac{m_t + \beta_3 n_t}{\sqrt{v_t} + \epsilon} + (1 - \gamma) \operatorname{sign}(u_t) \Big). \end{split}$$

Figure 3: Validation loss on OpenWebText for GPT-2 (125M) model.

Table 2: Validation loss of MADA on OpenWebText vs other adaptive optimizer baselines.

Validation Loss				
2.8956				
2.8896				
2.8950				
2.8892				
2.8895				
MADA				
2.8806				
2.8766				
Poor initialization				
2.8921				
2.9157				

HyperAdam is the case when only β_1 , β_2 are learned

Table 3 Validation perplexities of competing methodson OpenWebText, Wikitext and Lambada datasets.

Method	OpenWebText	Wikitext	Lambada		
Baselines					
Adam	18.0940	63.8544	77.3314		
Adan	17.9863	63.5518	74.6970		
HyperAdam	18.0843	61.7717	72.6803		
Lion	17.9792	61.8661	75.3158		
AVGrad	17.9840	64.2620	75.1317		
MADA					
MADA	17.8249	61.2513	74.2480		
MADA-FS	17.7544	59.4086	73.5623		
Poor initialization					
$MADA^{-}$	18.0317	57.1613	75.3550		
Adam^-	18.4624	72.9017	79.1217		

Figure 4: Parameter values with respect to iterations for $\beta_{1,0} =$ $0.9, \beta_{2,0} = 0.95, \beta_{3,0} = 0$, during training of GPT-2 (125M).

Figure 5: Parameter values with respect to iterations for $\beta_{1,0} =$ $0.7, \beta_{2,0} = 0.8, \beta_{3,0} = 0$, during training of GPT-2 (125M).

Figure 6: Parameter values with respect to iterations for $\beta_{1,0} =$ $0.9, \beta_{2,0} = 0.95, \beta_{3,0} = 0.9$, during training of GPT-2 (125M).

Figure 7: Final training loss of Adam, MADA, and HyperAdam vs. initial β values on Shakespeare dataset. MADA yields better performance for wider choice of initial β values, illustrating its robustness.

Synthetic convex experiment. This is a famous example from [Reddi et al., 2018], where Adam notably fails to converge to the optimal solution, x = -1; whereas AMSGrad (and AVGrad) reach the optimum. The online learning experiment given in [Reddi et al., 2018] to motivate AMSGrad is as follows:

$$g_t(x) := \begin{cases} 1010x & \text{for } t \mod 101 = 1\\ -10x & \text{otherwise} \end{cases}$$
(32)

Figure 8: Average regret, x_t , ρ_t with respect to iterations for MADA on simple convex function.

Future work

- Find a generic framework for proving convergence of meta-optimizers.
- Add more optimizers into MADA, e.g. LAMB or second order optimizers.
- Extend the formulation to discover new optimizers.

Thank You!

Computational Burden

- If we have T tokens, N model parameters; forward-backward pass requires 6TN FLOPs, update of optimizer parameters require cN FLOPs, where c is between 10-20.
- Computation of hyper-gradients is also O(N), hence overall burden is O(N) and does not depend on T.
- Memory burden is heavier.