PiXC

Pictures: Express and Communicate

Manohar Ganesan Parameswaran Raman Ramakrishnan CH Suman Manjunath

Motivation

- Applied NLG
- Microsoft Adaptive Keyboard Contest
- Autism Spectrum "Thinking in Pictures"
- Required a Natural Language Generation
 Component

Architecture

Data sets

Concepts.csv

- Stores mappings of concepts to related phrases
- Concepts also map directly to images user selects

Phrases.csv

Stores mappings of phrase names to identifiers
 Used mainly for computation and lookup

Triplets.csv

Stores Subject, Verb, Object phrases from

Creation of the Graph

Phrases:

P1 : A man

P2 : plays

P3 : his guitar

P4 : A girl

P5 : basketball

Phrase selection logic...

C1 = woman

C2 = talk

C3 = phone

What we tried...

- Clustering of phrases
- Markov Decision Process
- Representation of data sets

Challenges...

Grammatical Correctness ✓ Can be enforced using rules

Logical Correctness

- Eg: Train talks over the phone
- Directly dependent on the learning process
- Given sufficient data, our system will do well

Future work...

- Test scalability
- Logical correctness
- Complex combinations of concepts

Related work and literature...

- FARHADI, A., HEJRATI, M., SADEGHI, M., YOUNG, P., RASHTCHIAN, C., HOCKENMAIER, J. & FORSYTH, D. 2010. Every Picture Tells a Story: Generating Sentences from Images. Computer Vision-ECCV 2010, 15-29.
- <u>http://howwasschooltoday.computing.dundee.ac.uk/</u>
 Assistive and Healthcare Technologies, School of Computing, University of Dundee