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Convex Minimization

▶ Consider the unconstrained minimization problem

min
x∈Rd

f (x),

where f is convex and twice continuously differentiable

▶ Popular methods: first-order methods such as gradient descent

xk+1 = xk − η∇f (xk)

• Cheap to implement ✓
• Slow convergence, esp. for ill-conditioned problems ✗
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Second-Order Methods

▶ We focus on second-order methods that utilize the Hessian of f
▶ Newton’s method

xk+1 = xk −∇2f (xk)−1∇f (xk)

= argmin
x∈Rd

{
f (xk) +∇f (xk)⊤(x − xk) + 1

2(x − xk)⊤∇2f (xk)(x − xk)
}

▶ Cubic regularized Newton (CRN) method [Griewank’81; Nesterov-Polyak’06]

xk+1 = argmin
x∈Rd

{
f (xk) +∇f (xk)⊤(x − xk) + 1

2(x − xk)⊤∇2f (xk)(x − xk) + M
6 ∥x − xk∥3

}

• When f is convex, f (xk)− f ∗ = O(1/k2)
• When f is strongly convex, it achieves a superlinear convergence rate
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The Curse of Dimensionality

▶ The main drawback of CRN is its substantial memory and computational costs
• Computing & storing the Hessian ∇2f (x): O(d2)
• Solving a cubic subproblem: O(d3)

▶ As a result, CRN becomes impractical for optimization problems with high dimensions
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Subspace Second-Order Methods

▶ To reduce the cost, one approach is to execute 2nd-order updates in a subspace Vk of
dimension m≪ d [Doikov-Richtárik’18; Gower et al.’19; Hanzely et al.’20]

▶ Let gk := ∇f (xk) and Hk := ∇2f (xk)

sk = argmin
s∈

{
g⊤

k s + 1
2s⊤Hks + M

6 ∥s∥
3
}

xk+1 = xk + sk

▶ Equivalently, let Vk ∈ Rd×m whose columns form an orthonormal basis for Vk

Subspace CRN:
zk = argmin

z∈Rm

{
g̃⊤

k z + 1
2z⊤H̃kz + M

6 ∥z∥
3
}

, sk = Vkzk ,

xk+1 = xk + sk

where g̃k = V⊤
k gk ∈ Rm and H̃k = V⊤

k HkVk ∈ Rm×m
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Stochastic Subspace Second-Order Methods

▶ How to choose the subspace Vk?

▶ The existing works choose a random subspace
• Randomized Block Cubic Newton (RBCN) [Doikov-Richtárik’18]:

Sampling a random block of m coordinates
• Stochastic Subspace Cubic Newton (SSCN) [Hanzely et al.’20]:

A general random subspace satisfying E[VkV⊤
k ] = m

d I
▶ Reduced computational costs . . .

• Computing the subspace Hessian H̃k : O(m2) in some special cases
• Solving the cubic subproblem: O(m3)

▶ . . . but a much slower convergence rate

O
(

d −m
m · 1

k +
( d

m

)2
· 1

k2

)

Question: Can we improve the dimensional dependence of subspace second-order methods?
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Where the Dimensional Dependence Comes from?

▶ Intuitively, it stems from the fact that the subspace is chosen uniformly random,
oblivious to the objective function f

▶ Such a random subspace is unlikely to contain a “good” descent direction

▶ It should be better to employ a subspace customized to the local geometry of f
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Contributions

▶ We propose the Krylov CRN method, where we perform the CRN update over the
Krylov subspace associated with Hk and gk

▶ Can be implemented using the Lanczos method, with 1 gradient evaluation and m
Hessian-vector products per iteration

▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate

CRN [Nesterov-Polyak’06] O(d3) O( 1
k2 )

SSCN [Hanzely et al.’20] O(m3)∗ O(d−m
m · 1

k + d2

m2 · 1
k2 )

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2 )

▶ When the Hessian spectrum possesses certain structure, our method can achieve a
faster rate

Ruichen Jiang Krylov Cubic Regularized Newton 9 / 33



Contributions

▶ We propose the Krylov CRN method, where we perform the CRN update over the
Krylov subspace associated with Hk and gk

▶ Can be implemented using the Lanczos method, with 1 gradient evaluation and m
Hessian-vector products per iteration

▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate

CRN [Nesterov-Polyak’06] O(d3) O( 1
k2 )

SSCN [Hanzely et al.’20] O(m3)∗ O(d−m
m · 1

k + d2

m2 · 1
k2 )

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2 )

▶ When the Hessian spectrum possesses certain structure, our method can achieve a
faster rate

Ruichen Jiang Krylov Cubic Regularized Newton 9 / 33



Contributions

▶ We propose the Krylov CRN method, where we perform the CRN update over the
Krylov subspace associated with Hk and gk

▶ Can be implemented using the Lanczos method, with 1 gradient evaluation and m
Hessian-vector products per iteration

▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate

CRN [Nesterov-Polyak’06] O(d3) O( 1
k2 )

SSCN [Hanzely et al.’20] O(m3)∗ O(d−m
m · 1

k + d2

m2 · 1
k2 )

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2 )

▶ When the Hessian spectrum possesses certain structure, our method can achieve a
faster rate

Ruichen Jiang Krylov Cubic Regularized Newton 9 / 33



Contributions

▶ We propose the Krylov CRN method, where we perform the CRN update over the
Krylov subspace associated with Hk and gk

▶ Can be implemented using the Lanczos method, with 1 gradient evaluation and m
Hessian-vector products per iteration

▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate

CRN [Nesterov-Polyak’06] O(d3) O( 1
k2 )

SSCN [Hanzely et al.’20] O(m3)∗ O(d−m
m · 1

k + d2

m2 · 1
k2 )

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2 )

▶ When the Hessian spectrum possesses certain structure, our method can achieve a
faster rate

Ruichen Jiang Krylov Cubic Regularized Newton 9 / 33



Contributions

▶ We propose the Krylov CRN method, where we perform the CRN update over the
Krylov subspace associated with Hk and gk

▶ Can be implemented using the Lanczos method, with 1 gradient evaluation and m
Hessian-vector products per iteration

▶ In the convex case, we prove a dimension-free convergence rate

Methods Per-iteration cost Convergence rate

CRN [Nesterov-Polyak’06] O(d3) O( 1
k2 )

SSCN [Hanzely et al.’20] O(m3)∗ O(d−m
m · 1

k + d2

m2 · 1
k2 )

Krylov CRN (ours) O(md)∗∗ O( 1
mk + 1

k2 )

▶ When the Hessian spectrum possesses certain structure, our method can achieve a
faster rate

Ruichen Jiang Krylov Cubic Regularized Newton 9 / 33



Contributions
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Review: Cubic Regularized Newton Method

▶ We assume that:
• f : Rd → R is convex
• f is bounded from below and has bounded level-sets
• The Hessian of f is Lipchitz, i.e., ∥∇2f (x)−∇2f (y)∥ ≤ L2∥x − y∥, ∀x, y ∈ Rd

▶ An important property: upper bound on quadratic approximation error∣∣∣∣f (x)−
(

f (xk) + g⊤
k (x − xk) + 1

2(x − xk)⊤Hk(x − xk)
)∣∣∣∣ ≤ L2

6 ∥x − xk∥3, ∀x ∈ Rd

▶ The CRN selects xk+1 as the minimizer of the cubic upper approximation

xk+1 = argmin
x∈Rd

{
f (xk) + g⊤

k (x − xk) + 1
2(x − xk)⊤Hk(x − xk) + L2

6 ∥x − xk∥3
}
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Review: Cubic Regularized Newton Method

Theorem
Let {xk}k≥0 be generated by CRN and define D := sup{∥x − x∗∥ : x ∈ Rd , f (x) ≤ f (x0)}.
Then we have

f (xk)− f ∗ ≤ 9L2D3

(k + 2)(k + 1)

▶ Using the cubic upper bound (sk = xk+1 − xk):

f (xk+1) ≤ f (xk) + g⊤
k sk + 1

2s⊤
k Hksk + L2

6 ∥sk∥3

▶ Since sk minimizes the cubic function:

f (xk+1) ≤ f (xk)+g⊤
k s + 1

2s⊤Hks + L2
6 ∥s∥

3, ∀s ∈ Rd

▶ Using the cubic lower bound:
f (xk+1) ≤ f (xk + s) + L2

3 ∥s∥
3, ∀s ∈ Rd
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Review: Cubic Regularized Newton Method (cont.)
▶ Using the cubic lower bound:

f (xk+1) ≤ f (xk + s) + L2
3 ∥s∥

3, ∀s ∈ Rd

▶ Choosing s = 3
k+3(x∗ − xk) and using convexity of f :

f (xk+1) ≤ f
( k

k + 3xk + 3
k + 3x∗

)
+9L2∥xk − x∗∥3

(k + 3)3 ≤ k
k + 3 f (xk)+ 3

k + 3 f ∗+ 9L2D3

(k + 3)3

▶ Define Ak = k(k + 1)(k + 2):

f (xk+1)− f ∗ ≤ k
k + 3 (f (xk)− f ∗) + 9L2D3

(k + 3)3

⇒ Ak+1(f (xk+1)− f ∗) ≤ Ak(f (xk)− f ∗) + 9L2D3

⇒ Ak+1(f (xk+1)− f ∗) ≤ 9L2D3(k + 1) ⇒ f (xk+1)− f ∗ ≤ 9L2D3

(k + 2)(k + 3)
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Subspace Cubic Regularized Newton
▶ Subspace CRN:

sk = argmin
s∈Vk

{
g⊤

k s + 1
2s⊤Hks + L2

6 ∥s∥
3
}

xk+1 = xk + sk

▶ Where the analysis would break when introducing the subspace Vk?

▶ Recall the crucial inequality

f (xk+1) ≤ f (xk) + g⊤
k s + 1

2s⊤
k Hks + L2

6 ∥s∥
3, ∀s ∈ Rd

∀s ∈ Vk

▶ Let Pk := VkV⊤
k be the orthogonal projection matrix of Vk . Since Pks ∈ Vk , ∀s ∈ Rd :

f (xk+1) ≤ f (xk) + g⊤
k Pks + 1

2(Pks)⊤Hk(Pks) + L2
6 ∥Pks∥3, ∀s ∈ Rd
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Subspace Cubic Regularized Newton

▶ The exactly same analysis would apply if, for any s ∈ Rd ,

(A) g⊤
k Pks ≤ g⊤

k s

⇔ gk = Pkgk ⇔ gk ∈ Vk

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks

⇔ PkHkPk ⪯ Hk ⇔ Hkv ∈ Vk , ∀v ∈ Vk

(C) ∥Pks∥ ≤ ∥s∥

✓ since Pk is an orthogonal projection matrix

▶ Combining (A) and (B), we obtain that

gk ∈ Vk , Hkgk ∈ Vk , H2
kgk ∈ Vk , . . . , ⇒ span{Hi

kgk | i = 0, 1, . . . } ⊂ Vk

▶ This is exactly the maximal Krylov subspace generated by Hk and gk !
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Krylov Subspace

▶ Formally, the j-th Krylov subspace generated by A ∈ Rd×d and b ∈ Rd is defined as

Kj(A, b) = span{b, Ab, . . . , Aj−1b}.

▶ Moreover, there exists an integer r0 ≤ d such that:

K1(A, b) ⊂ K2(A, b) ⊂ · · · ⊂ Kr0(A, b)︸ ︷︷ ︸
dim=r0

= Kr0+1(A, b) = Kr0+2(A, b) = · · ·

We call Kr0(A, b) the maximal Krylov subspace
▶ To sum up: if we let Vk = Kr0(Hk , gk), the subspace CRN retains the same

convergence rate of CRN
▶ However, r0 can be as large as d ⇒ we use the Krylov subspace up to dim m
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Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk

✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk

✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥

✓ since Pk is an orthogonal projection matrix
▶ Only need to control the error from Condition (B)
▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately

and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk ✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk

✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥

✓ since Pk is an orthogonal projection matrix
▶ Only need to control the error from Condition (B)
▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately

and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk ✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk

✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥ ✓ since Pk is an orthogonal projection matrix

▶ Only need to control the error from Condition (B)
▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately

and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk ✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk ✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥ ✓ since Pk is an orthogonal projection matrix

▶ Only need to control the error from Condition (B)
▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately

and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk ✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk ✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥ ✓ since Pk is an orthogonal projection matrix
▶ Only need to control the error from Condition (B)

▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately
and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Subspace

▶ Let us check if Vk = Km(Hk , gk) satisfies the three conditions:

(A) g⊤
k Pks ≤ g⊤

k s ⇔ gk ∈ Vk ✓

(B) (Pks)⊤Hk(Pks) ≤ s⊤Hks ⇔ Hkv ∈ Vk , ∀v ∈ Vk ✗ Hm−1
k gk ∈ Vk but Hm

k gk /∈ Vk

(C) ∥Pks∥ ≤ ∥s∥ ✓ since Pk is an orthogonal projection matrix
▶ Only need to control the error from Condition (B)
▶ In comparison, when Vk is chosen randomly, both (A) and (B) only hold approximately

and the induced errors depend on m/d

Ruichen Jiang Krylov Cubic Regularized Newton 18 / 33



Krylov Cubic Regularized Newton

▶ Input: Initial point x0 ∈ Rd , subspace dimension m, regularization parameter M > 0
▶ for k = 0, 1, . . . , do

• Vk ← the orthnormal basis of Km(Hk , gk), g̃k ← V⊤
k gk , H̃k ← V⊤

k HkVk
• Solve the cubic subproblem

zk = argmin
z∈Rm

{
g̃⊤

k z + 1
2z⊤H̃kz + M

6 ∥z∥
3
}

,

• Update xk+1 = xk + Vkzk

▶ end for

▶ The remaining question: How to compute Vk , g̃k , and H̃k?

⇐ Lanczos method!
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Lanczos Method

▶ Input: H ∈ Rd×d , g ∈ Rd , and the dimension m
▶ Initialize: v1 = g/∥g∥, β1 = 0, v0 = 0
▶ for j = 1, 2, . . . , m do

• wj ← Hvj − βjvj−1 // one Hessian-vector product (HVP)
• αj ← w⊤

j vj
• wj ← wj − αjvj
• βj+1 ← ∥wj∥2
• vj+1 ← wj/βj+1

▶ end for
▶ Output: V = [v1, v2, . . . , vm], g̃ = ∥g∥e1, and H̃ =


α1 β2
β2 α2 β3

β3
...

...
...

... βm−1
βm−1 αm−1 βm

βm αm



▶ No need to compute & store H explicitly; only requires m HVPs
⇒ Can be done efficiently via back-propagation [Pearlmutter’94]

▶ Bonus: H̃ is a sparse tridiagonal matrix
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Krylov Cubic Regularized Newton

▶ Input: Initial point x0 ∈ Rd , subspace dimension m, regularization parameter M > 0
▶ for k = 0, 1, . . . , do

• (Vk , g̃k , H̃k)← Lanczos(Hk , gk ; m)
• Solve the cubic subproblem

zk = argmin
z∈Rm

{
g̃⊤

k z + 1
2z⊤H̃kz + M

6 ∥z∥
3
}

,

• Update xk+1 = xk + Vkzk

▶ end for

▶ Per-iteration computational cost
• Performing Lanczos iteration: m HVPs ⇒ O(md)
• Solving the cubic subproblem: O(m)
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Convergence Analysis

▶ For simplicity, we further assume that ∇2f (x) ⪯ L1I as in [Hanzely et al.’20]

Lemma
Let {xk} be generated by Krylov CRN with subspace dim m. We have

f (xk+1) ≤ f (xk) + g⊤
k s + 1

2s⊤Hks + L2
6 ∥s∥

3 + L1
2m∥s∥

2, ∀s ∈ Rd .

▶ The additional error term is independent of d
▶ It diminishes as m increases
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Proof Sketch

▶ For simplicity, ignore the subscript k
▶ Let P(m) be the orthogonal projection matrix associated with Km(H, g)

▶ Recall the key inequality: for any s ∈ Rd ,

f (x+) ≤ f (x) + g⊤P(m)s + 1
2(P(m)s)⊤H(P(m)s) + L2

6 ∥P
(m)s∥3

▶ Since g ∈ Km(H, g) ⇔ P(m)g = g and ∥P(m)s∥ ≤ ∥s∥:

f (x+) ≤ f (x) + g⊤s + 1
2s⊤Hs + L2

6 ∥s∥
3 + 1

2s⊤
(
P(m)HP(m) −H

)
s

▶ Recall the Lanczos algorithm generates {vj}mj=1 and {βj+1}mj=1:

1
2s⊤

(
P(m)HP(m) −H

)
s ≤ βm+1|v⊤

m s||v⊤
m+1s|
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Proof Sketch (cont.)

▶ It can be shown that βj+1 ≤ L1/2 for all j ≥ 1:

1
2s⊤

(
P(m)HP(m) −H

)
s ≤ βm+1|v⊤

m s||v⊤
m+1s| ≤ L1

2 ∥s∥
2

▶ However, the error term does not diminish when m increases
▶ Turns out we can strengthen the bound to

f (x+) ≤ f (x) + g⊤s + 1
2s⊤Hs + L2

6 ∥s∥
3 + 1

2 min
j∈{1,...,m}

{
s⊤
(
P(j)HP(j) −H

)
s
}

,

where P(j) be the orthogonal projection matrix associated with Kj(H, g)
▶ Hence,

1
2 min

j∈{1,...,m}

{
s⊤
(
P(j)HP(j) −H

)
s
}
≤ L1

2 min
j∈{1,...,m}

|v⊤
j s||v⊤

j+1s|

▶ Since {vj} are orthonormal, we further have minj∈{1,...,m} |v⊤
j s||v⊤

j+1s| ≤ 1
m∥s∥

2
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Main Result: Convex Setting

Theorem
Let {xk} be generated by the Krylov CRN method. Then we have

f (xk)− f ∗ ≤ 9L1D2

2mk + 9L2D3

k2

▶ The convergence rate is independent of d

▶ To achieve accuracy ϵ, the number of iterations required is O
(

1
mϵ + 1√

ϵ

)
▶ In comparison, SSCN [Hanzely et al.’20] requires O(d−m

m · 1
ϵ + d

m ·
1√
ϵ
)

▶ When m≪ d , our complexity is lower by a factor of d
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Main Result: Strongly Convex Setting

▶ We also consider the strongly convex setting, i.e., ∇2f (x) ⪰ µI, ∀x ∈ Rd

Theorem
Let {xk} be generated by the Krylov CRN method. Then, the number of iterations required
to reach δk := f (xk)− f (x∗) ≤ ϵ can be upper bounded by

k = O
(( L1

mµ
+ 1

)
log δ0

ϵ
+
√

L2δ0.25
0

µ0.75

)

▶ In comparison, SSCN requires O
((

d−m
m

L1
µ + d

m

)
log 1

ϵ

)
▶ Again, when m≪ d , we shave a factor of d
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Hessian Eigenspectrum
▶ The convergence bound depends on L1, i.e., the largest eigenvalue of the Hessian

▶ With a more refined analysis, we can replace L1 by

ρ(m)
max := max

i∈{0,1,...,k−1}
{ρ(m)(Hi , gi)},

where ρ(m)(H, g) is defined by

ρ(m)(H, g) = min
c0,...,cm−1∈R

∥∥∥∥∥Hm g
∥g∥ −

m−1∑
i=0

ciHi g
∥g∥

∥∥∥∥∥
1
m

▶ For a polynomial p(x) = xm −
∑m−1

i=0 cix i , define p(H) = Hm −
∑m−1

i=0 ciHi

▶ Let Mm be the set of monic polynomials of degree m. Then we have

ρ(m)(H, g) = min
p∈Mm

∥∥∥∥p(H) g
∥g∥

∥∥∥∥ 1
m
≤ min

p∈Mm
∥p(H)∥

1
m
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Hessian Eigenspectrum

▶ Assume that the Hessian H has r distinct eigenvalues in decreasing order:
λ1 > λ2 > · · · > λr

▶ Then
ρ(m)(H, g) ≤ min

p∈Mm
∥p(H)∥

1
m ≤ min

p∈Mm
max

i∈{1,2,...,r}
|p(λi)|

1
m .

▶ Example I: ρ(m)(H, g) ≤ (
∏m

i=1 λi)
1
m when m < r , ρ(m)(H, g) = 0 when m ≥ r

• If the rank of Hessian is at most m − 1, then ρ(m)(H, g) = 0

▶ Example II: Assume that all the eigenvalues of H lie within [0, ∆] ∪ [L1 −∆, L1] for
some L1 > ∆ > 0. Then, when m is even, we have

ρ(m)(H, g) ≤ 21/m
√

∆(L1 −∆)/2
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Logistic Regression Problems
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▶ The convergence path of Krylov-CRN remains almost unchanged as d increases
▶ SSCN converges slower as d increases
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▶ When d is large, Krylov CRN converges much faster than the others
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