
Scaling Multinomial Logistic Regression via Hybrid Parallelism
Parameswaran Raman

University of California, Santa Cruz
params@ucsc.edu

Sriram Srinivasan
University of California, Santa Cruz

ssriniv9@ucsc.edu

Shin Matsushima
University of Tokyo, Japan

shin_matsushima@mist.i.u-tokyo.ac.jp

Xinhua Zhang
University of Illinios, Chicago

zhangx@uic.edu

Hyokun Yun
Amazon

yunhyoku@amazon.com

S.V.N. Vishwanathan
Amazon

vishy@amazon.com

ABSTRACT
We study the problem of scaling Multinomial Logistic Regression
(MLR) to datasets with very large number of data points in the
presence of large number of classes. At a scale where neither data
nor the parameters are able to fit on a single machine, we argue
that simultaneous data and model parallelism (Hybrid Parallelism) is
inevitable. The key challenge in achieving such a form of parallelism
in MLR is the log-partition function which needs to be computed
across all K classes per data point, thus making model parallelism
non-trivial.

To overcome this problem, we propose a reformulation of the
original objective that exploits double-separability, an attractive
property that naturally leads to hybrid parallelism. Our algorithm
(DS-MLR) is asynchronous and completely de-centralized, requiring
minimal communication across workers while keeping both data
and parameter workloads partitioned. Unlike standard data parallel
approaches, DS-MLR avoids bulk-synchronization by maintaining
local normalization terms on each worker and accumulating them
incrementally using a token-ring topology.

We demonstrate the versatility of DS-MLR under various sce-
narios in data and model parallelism, through an empirical study
consisting of real-world datasets. In particular, to demonstrate scal-
ing via hybrid parallelism, we created a new benchmark dataset
(Reddit-Full) by pre-processing 1.7 billion reddit user comments
spanning the period 2007-2015. We used DS-MLR to solve an ex-
treme multi-class classification1 problem of classifying 211 million
data points into their corresponding subreddits. Reddit-Full is a
massive data set with data occupying 228 GB and 44 billion param-
eters occupying 358 GB. To the best of our knowledge, no other
existing methods can handle MLR in this setting.

KEYWORDS
Multinomial Logistic Regression; Stochastic Optimization; Large
Scale Machine Learning

1Extreme classification is defined as multi-class / multi-label classification in the
presence of very large number of examples and classes / labels.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330837

ACM Reference Format:
Parameswaran Raman, Sriram Srinivasan, Shin Matsushima, Xinhua Zhang,
Hyokun Yun, and S.V.N. Vishwanathan. 2019. Scaling Multinomial Lo-
gistic Regression via Hybrid Parallelism. In The 25th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’19), August 4–8,
2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3292500.3330837

1 INTRODUCTION
In this paper, we focus on multinomial logistic regression (MLR),
also known as softmax regression which computes the probability
of a D-dimensional data point xi ∈ {x1, x2, . . . , xN } belonging to a
class k ∈ {1, 2, . . . ,K }. The model is parameterized by a parameter
matrixW ∈ RD×K . MLR is amethod of choice for several real-world
tasks such as Image Classification [20] and Video Recommendation
[8]. It also manifests as the final output layer in Feed-Forward
Deep Neural Networks [10]. Therefore, it has received significant
research attention [11], [26]. We concern ourselves with running
MLR in the presence of large number of data points N and large
number of classes K - a setting which often requires distributing
computation over P machines (viz. workers).

1.1 Motivation for Hybrid Parallelism
Traditional methods to perform distributed MLR typically fall into
two categories: (a) data parallelmethods such as L-BFGS [17] which
partition the data workload across P workers, however, duplicate
the model workload across all workers, and (b)model parallelmeth-
ods such as LC [11], which partition the model workload across P
workers, but need to duplicate the data across all of them. This is
illustrated in Table 1.

Storage per worker Communication

Data Parameters

L-BFGS O (ND
P) O (KD) O (KD)

LC O (ND) O (KDP) +O (N) O (N)

DS-MLR O (ND
P) O (KDP) +O (NP) O (KDP)

Table 1: Memory requirements of various algorithms in
MLR (N data points, D features, K classes, P workers).

The growing acclaim of machine learning is witnessing a surge of
novel prediction tasks in diverse domains such as natural language,
speech, image and video. These tasks not only involve humongous
amounts of data, but also are powered by sophisticated models, thus

https://doi.org/10.1145/3292500.3330837
https://doi.org/10.1145/3292500.3330837
https://doi.org/10.1145/3292500.3330837

LSH
TC1

-sm
all

LSH
TC1

-lar
ge OD

P

You
tube

8M-
Vid

eo

Red
dit-

Full
101

102

103

104

105

106

max memory of commodity machine

Si
ze

in
M
B
(lo

g-
sc
al
e)

data size (MB)
parameters size (MB)

(a) Data and Model requirements (MB)
of real-world datasets for MLR.

103 104

0.5

0.6

0.7

0.8

time (secs)
ob
je
ct
iv
e

LSHTC1-large dataset (Model Size: 34 GB)

DS-MLR
LC

0 1 2 3 4 5 6
·105

9.4

9.6

9.8

10

10.2

10.4

time (secs)

ob
je
ct
iv
e

ODP dataset (Model Size: 355 GB)

DS-MLR

0 2 4 6
·105

10

10.2

10.4

time (secs)

ob
je
ct
iv
e

Reddit-Full dataset (Data Size: 228 GB, Model Size: 358 GB)

DS-MLR

(b) DS-MLR being a hybrid-parallel method can be run on all datasets with large model storage
requirements.

Figure 1: Training sophisticatedmodels on large real-world datasets (e.g. Reddit-Full dataset in Figure 1a) can easily cause both
the data and parameter sizes (shown as blue and red bars) to well exceed thememory capacity of a commodity cluster machine
(shown in dotted black lines). In Figure 1b, we show how this challenge can bemet by designing a hybrid-parallel method such
as DS-MLR which partitions both data and parameters simultaneously. This enables us to handle data and model workloads
of all sizes - in such situations, popular baselines such as L-BFGS [17] (data parallel only) and LC [11] (model parallel only)
struggle to run.

demanding larger storage footprints for the model itself. Such mem-
ory requirements typically exceed the capacity of a single machine
in a commodity cluster easily. Figure 1a illustrates this fundamental
challenge in large-scale machine learning. As seen in the figure,
real-world datasets exhibit varying storage requirements for the
data and model. While the smaller ones are within the capacity of
a single machine, larger datasets such as ODP and Reddit are im-
possible to run on a commodity cluster with just traditional model
parallelism approaches. This is because ODP has a massive require-
ment of 355 GB for the model itself, while Reddit-Full dataset is
even bigger, requiring 228 GB for the data and 358 GB for its model.

One versatilemethod (DS-MLR):We propose a universalmethod
which acts as a swiss army knife to get the best of both worlds.
As a consequence of partitioning both data and model workloads
simultaneously (Hybrid Parallelism) across P processors, DS-MLR is
able to handle data and model parameters of varying sizes, without
incurring any storage costs due to duplication. In Figure 1b, we
show results of running DS-MLR on three representative datasets
which have large model storage requirements: (i) Despite being a
modestly-sized dataset, LSHTC-large requires 34 GB for its model
parameters. As a result, only model-parallel methods such as LC
can be run on it. When compared against DS-MLR, we observed
that DS-MLR is able to achieve a much faster convergence than LC
as seen in the plot (ii) ODP is a much larger dataset requiring 355
GB for the model parameters. Even though LC could theoretically
be run on it, we observed that it took an enormous amount of time
to complete even a single iteration. We believe this is because LC is
a second-order method and therefore its per iteration cost is signifi-
cantly higher than a stochastic method such as DS-MLR (iii) Finally,
Reddit-Full is a new benchmark dataset pushing the limits of data
and model storage. Running MLR on this dataset requires 228 GB
of data and 358 GB of model storage. This is a prototypical use-case
where a hybrid-parallel method shines over its vanilla data/model
parallel counterparts. To the best of our knowledge no other existing

methods are able to handle such large workloads. Figure 1b shows
that DS-MLR is able to handle this scale. However, since each iter-
ation on this massive dataset takes 5 hours (this is excluding the
time spent in data loading and initializing the optimizer), we could
not keep our experiment running beyond 10 days due to job time
limitations on our HPC cluster.

Cost Analysis of using commodity hardware: Massive real-
world datasets demand high memory, e.g. Reddit-Full consumes
600 GB of total memory (228 GB data, 358 GB model parameters).
When using hybrid parallelism, one can get away with using cheap
commodity hardware. Since the load for RedditFull dataset demands
50,000 compute hours per iteration, using 20 c5.4xlarge EC2 in-
stances (32 GB RAM, 16 CPUs, $0.68 / hr per machine) each run-
ning 16 threads, one iteration requires 156 hours with a cost of
$2,121 per iteration. On the other hand, if we use data parallelism
only (or model parallelism only), high-memory instances such as
x1.16xlarge (900 GB RAM, 64 CPUs, $6.67 per hr per machine) are
inevitable. A rough calculation shows that to achieve the same per
iteration time, one would have to spend $111,335. This is mainly be-
cause, either data or parameters would need to be replicated across
each processor, thus making it impossible to use all 64 cores. Even
if we make use of a clever data or parameter sharing mechanism to
avoid replication, the resulting cost comes down to $5,000 roughly,
which is still twice the earlier case.

1.2 Our main contributions
Hybrid Parallel reformulation for MLR: We present DS-MLR,
a novel distributed stochastic optimization algorithm that can par-
tition both data as well as model parameters simultaneously (hybrid
parallel) across its workers. DS-MLR is able to perfectly partition
the workload across P workers, costing O (ND

P) storage for data
and O (KDP +

N
P) for the model. As a result, DS-MLR can scale to

arbitrarily large datasets where to the best of our knowledge, many
of the existing distributed algorithms cannot be applied since they

need to either duplicate O (KD) storage (data parallel methods) or
O (ND) storage (model parallel methods) across their workers.

Asynchronous and De-centralized Implementation: To de-
ploy DS-MLR on real-world datasets, we develop a non-blocking
and asynchronous variant (DS-MLR Async), which provides further
speedups in the multi-core, multi-machine setting by interleaving
the computation and communication phases during every itera-
tion. DS-MLR avoids expensive bulk-synchronization operations by
maintaining local normalization terms on each worker and accu-
mulating them incrementally using a token-ring topology. DS-MLR
is implemented in C++ making use of intra-machine parallelism
(multi-threading using Intel TBB) as well as inter-machine paral-
lelism (using MPI).

Large-scale real world experiments: We present an exhaus-
tive empirical study running DS-MLR on real-world datasets with
varying data and model footprints, showing that DS-MLR readily
applies in all cases. In particular, to demonstrate applicability of DS-
MLR to the scenario where both data and model do not fit on a single
machine, we created a new benchmark dataset Reddit-Full that has
data and model footprints of 228 GB and 358 GB respectively.

2 RELATEDWORK
There has been a flurry of work in the past few years on developing
distributed optimization algorithms for machine learning. In this
section, we characterize some of this related work and put our
method DS-MLR in perspective.

Data Parallelism vsModel Parallelism: The classic paradigm
in distributed machine learning is to perform data partitioning, us-
ing, for instance, a map reduce style architecture [7] where data
is distributed across multiple slaves. In each iteration, the slaves
gather the parameter vector from the master, compute gradients
locally and transmit them back to the master. The L-BFGS opti-
mization algorithm [17] is typically used in the master to update
the parameters after every iteration. The main drawback of this
strategy is that the model parameters need to be replicated on every
machine. For a D dimensional problem involving K classes, this
demands O (K × D) storage. In many cases, this is too large to fit
on a single machine. An orthogonal approach is to use model par-
titioning. Here again, a master slave architecture is used, but now,
the data is replicated across each slave. The model parameters are
partitioned and distributed to each machine. During each iteration,
the model parameters on the individual machines are updated, and
some auxiliary variables are computed and distributed to the other
slaves, which use these variables in their parameter updates. See
the Log-Concavity (LC) method [11] for an example of such a strat-
egy. The main drawback of this approach, however, is that the data
needs to be replicated on each machine, and consequently it is not
applicable when the data is too large to fit on a single machine.

Distributed Stochastic Gradient Methods: Stochastic gradi-
ent descent based approaches have proven to be very fruitful since
they make frequent parameter updates and converge much more
rapidly [3]. Several algorithms for parallelizing SGD have been pro-
posed in the past such as Hogwild [18], Parallel SGD [32], DSGD [9],
FPSGD [31] and more recently, Parameter Server [14] and Petuum
[25]. Although the importance of data and model parallelism has
been recognized in Parameter Server and the Petuum framework

[25], to the best of our knowledge this has not been exploited in
their specific instantiations such as applications to multinomial
logistic regression [24]. We believe this is because [24] does not
reformulate the problem the way DS-MLR does. Several problems
in machine learning are not naturally well-suited for simultaneous
data and model parallelism, and therefore such reformulations are
essential in uncovering a suitable structure.

De-centralized vs Parameter ServerBased: Parameter Server
[14] a widely popular architecture for distributed machine learning,
makes use of two types of nodes: workers and parameter servers.
The former is used to store the partitioned data and the latter to
store the partitioned model. Workers communicate with the pa-
rameter servers and push/ pull gradient updates. Therefore, this
architecture can be leveraged for hybrid parallelism (simultaneous
data and model parallelism). [23] is one such work where parameter
servers have been used to provide simultaneous data and model
parallel formulation for binary regularized risk minimization prob-
lems. However parameter server has its own challenges: (1) There
is an added overhead in network bandwidth arising due to commu-
nication between the layers of workers and parameter servers, (2)
There is some effort required to strike the right balance between
hardware efficiency and statistical efficiency while setting up the
resource allocation (ratio of # of worker nodes to # of parameter
servers). Adding too few parameter servers could cause the model
to converge very slowly or not converge at all (poor statistical
efficiency) due to insufficient rounds of synchronization. On the
other hand, adding too many of these servers to enable frequent
model synchronization, could take hardware resources away from
the workers (poor hardware efficiency), (3) Moreover, the optimal
resource allocation of workers and parameter servers depends on
several factors such as the cluster size, hardware characteristics,
and the training data. These challenges have been explored in much
more detail in [22] with some empirical study. The work in [22] pro-
vides a motivation towards exploring de-centralized architectures
for distributed machine learning. Our proposed method DS-MLR is a
step in this direction, where at any given point of time, both data as
well as model stays truly partitioned into mutually exclusive blocks
across the workers. Parameter updates are directly exchanged across
workers, eliminating the need for any intermediate servers.

Asynchronous vs Synchronous: Parameter Server and Hog-
Wild [18] are asynchronous approaches. In Hogwild, parameter
updates are executed in parallel using different threads under the
assumption that any two serial updates are not likely to collide on
the same data point when the data is sparse. DS-MLR does not make
any such assumptions. It has both synchronous and asynchronous
variants and the latter is in the spirit of NOMAD [29].

Alternating direction method of multipliers (ADMM) [5] is an-
other popular technique to parallelize convex optimization prob-
lems. The key idea in ADMM is to reformulate the original opti-
mization problem by introducing redundant linear constraints. This
makes the new objective easily data parallel. However, ADMM suf-
fers from a similar drawback as L-BFGS when applied to multinomial
logistic regression. The number of redundant constraints that need
to be introduced are N (# data points) × K (# classes) which is a
major bottleneck to model parallelism. Moreover, the convergence
rate of ADMM for MLR is known to be slow as discussed in [11].

Log-Concavity (LC) method [11] proposed a distributed model
parallel approach to solve the multinomial logistic regression prob-
lem by linearizing the log-partition function based on its variational
form [4]. However, because their formulation is only model paral-
lel - the entire data has to be replicated across all the workers, and
a bulk-synchronization step is required per iteration to accumulate
the partial models from various machines. This is not practical for
real world applications when both the data and model sizes get
larger. Interestingly, we noticed that the objective function of the
LC method can also be recovered from the objective function of
DS-MLR (5).

Doubly-Separable formulations: Our reformulation in DS-
MLR exploits the doubly-separable [27] structure in terms of global
model parameters and some local auxiliary variables. Other doubly-
separable methods also exist such as NOMAD [29] for matrix com-
pletion and RoBiRank [28] for latent collaborative retrieval. NO-
MAD [29] is a distributed-memory, asynchronous and decentralized
algorithm and RoBiRank [28] is also a distributed-memory but syn-
chronous algorithm.

3 MULTINOMIAL LOGISTIC REGRESSION
Consider training data of the form (xi ,yi)i=1, ...,N where xi ∈ Rd
is a d-dimensional feature vector and yi ∈ {1, 2, . . . ,K } is a label
associated with it; K denotes the number of class labels. Let yik =
I (yi = k) denote the membership of data point xi to class k . The
probability that xi belongs to class k is given by:

p (y = k |xi) =
exp(wT

k xi)∑K
j=1 exp(w

T
j xi)
, (1)

whereW = {w1,w2, . . . ,wK } denotes the parameter vector for
each of the K classes. Using the negative log-likelihood of (1) as a
loss function, the L2-regularized objective function of MLR can be
written as:

L1 (W) =
λ

2

K∑
k=1
∥wk ∥2 −

1
N

N∑
i=1

K∑
k=1

yikw
T
k xi (2)

+
1
N

N∑
i=1

log *.
,

K∑
k=1

exp(wT
k xi)

+/
-
,

where λ is the regularization hyper-parameter. Table 2 summarizes
these notations. Optimizing the above objective function (2) when
the number of classes K is large, is extremely challenging as com-
puting the log partition function involves summing up over a large
number of classes. In addition, it couples the class level parameters
wk together, making it difficult to distribute computation. In this
paper, we present an alternative formulation for MLR, to address
this challenge.

4 DOUBLY-SEPARABLE MULTINOMIAL
LOGISTIC REGRESSION (DS-MLR)

In this section, we present a reformulation of the MLR problem,
which is closer in spirit to dual-decomposition methods [6]. We

begin by first rewriting (2) as,

L1 (W) =
λ

2

K∑
k=1
∥wk ∥2 −

1
N

N∑
i=1

K∑
k=1

yikw
T
k xi (3)

− 1
N

N∑
i=1

log 1∑K
k=1 exp(w

T
k xi)

,

This can be expressed as a constrained optimization problem,

L1 (W ,A) =
λ

2

K∑
k=1
∥wk ∥2 −

1
N

N∑
i=1

K∑
k=1

yikw
T
k xi −

1
N

N∑
i=1

logai ,

(4)

s.t. ai =
1∑K

k=1 exp(w
T
k xi)

, i = 1, 2, . . .N

where A = {ai }i=1, ...,N .

Observe that this resembles dual-decomposition methods of the
form:
minx,z f (x) + д(z) s.t. Ax + Bz = c , where f and д are convex
functions. In our objective function (4), the decomposable functions
are f (W) and д(A) respectively. Introducing Lagrange multipli-
ers, βi , i = 1, 2 . . .N , we obtain the equivalent unconstrained
minimax problem [6],

L2 (W ,A, β) =
λ

2

K∑
k=1
∥wk ∥2 −

1
N

N∑
i=1

K∑
k=1

yikw
T
k xi −

1
N

N∑
i=1

logai

(5)

+
1
N

N∑
i=1

K∑
k=1

βi ai exp(wT
k xi) −

1
N

N∑
i=1

βi

It is known that dual-decomposition methods can reliably find a
stationary point, therefore the solution obtained by our method is
also globally optimal. The updates for the primal variablesW , A
and dual variable β can be written as follows:

W t+1
k ← argmin

Wk

L2 (Wk ,a
t , βt), (6)

at+1i ← argmin
ai

L2 (W
t+1
k ,ati , β

t
i), (7)

βt+1i ← βti + ρ
*.
,
at+1i

K∑
k=1

exp
(
wT
k
t+1

xi

)
− 1+/

-
(8)

Here,W t+1
k and at+1i can be obtained by any black-box optimization

procedure, while βt+1i is updated via dual-ascent using a step-length
ρ. Intuitively, the dual-ascent update of β penalizes any violation
of the constraint in problem (4).

We make the following interesting observations in these updates:
Update for at+1i : When (7) is solved to optimality, ai admits an

exact closed-form solution given by,

ai =
1

βi
∑K
k=1 exp(w

T
k xi)

, (9)

Update for βt+1i : As a consequence of the above exact solution
for ai , the dual-ascent update for βi is no longer needed, since the
penalty is always zero during such a projection if βi is set to a

Symbol Definition
N total number of observations
D total number of dimensions
K total number of classes
x = {x1, . . . , xN }, xi ∈ RD data points
y =

{
y1, . . . ,yN

}, yi ∈ {1, 2, . . . ,K } class the data point xi belongs to (i.e. label)
W = {w1, . . . ,wK }, wk ∈ RD parameters of the model
a = {a1, . . . ,aN }, ai ∈ R auxiliary variables mapping one-one to the observations
b = {b1, . . . ,bN }, bi ∈ R auxiliary variables used to represent logai for convenience
yik = I (yi = k) Indicator variable denoting the membership of data point xi to class k
λ regularization hyper-parameter
η learning rate hyper-parameter

Table 2: Notations for Multinomial Logistic Regression

constant equal to 1.

Update forW t+1
k : This is the only update that we need to han-

dle numerically.

L2 (W ,A) can be first written in this form,

L2 (W ,B) =
N∑
i=1

K∑
k=1

(
λ

2N ∥wk ∥2 −
1
N
yikw

T
k xi −

1
NK

bi

+
1
N

exp(wT
k xi + bi) −

1
NK

)
(10)

wherewe denotebi = log(ai) for convenience andB = {bi }i=1, ...,N .
The objective function is now doubly-separable [27] since,

L2 (w1, . . . ,wK ,b1, . . . ,bN) =
N∑
i=1

K∑
k=1

fki (wk ,bi) (11)

where

fki (wk ,bi) =
λ

2N ∥wk ∥2 −
yikwT

k xi
N

+
exp(wT

k xi + bi)

N
− bi
NK
− 1
NK

(12)
Obtaining such a form for the objective function is key to achiev-
ing simultaneous data and model parallelism. It is worth pointing
out that such an objective function can also be derived using the
variational form for the log-partition function [4].

Stochastic Optimization: Minimizing L2 (W ,B) involves com-
puting the gradients of eqn (10) w.r.t. wk which is often computa-
tionally expensive. Instead, one can compute stochastic gradients
[19] which are computationally cheaper than the exact gradient,
and perform stochastic updates as follows:

wk ← wk − ηtK
(
λwk − yikxi + exp(wT

k xi + bi)xi
)

(13)
where ηt is the learning rate for wk in the t-th iteration.

Advantages of our reformulation of DS-MLR in eqn (10):
(1) The objective function L2 (W ,B) splits as summations over

N data points and K classes. Therefore, each term in the
stochastic updates only depends one data point i and one
class k . We exploit this to achieve simultaneous data and
model parallelism.

(2) We are able to update the variational parameters bi in closed-
form, avoiding noisy stochastic updates. This improves our
overall convergence.

(3) Our formulation lends itself nicely to an asynchronous im-
plementation. Section 5.2 describes this in more detail.

5 DISTRIBUTING THE COMPUTATION OF
DS-MLR

5.1 DS-MLR Synchronous
We first describe the distributed DS-MLR Synchronous algorithm
in Algorithm 1. The data and parameters are distributed among
the P processors as illustrated in Figure 2 where the row-blocks
and column-blocks represent data X (p) and weightsW (p) on each
local processor respectively. The algorithm proceeds by running T
iterations in parallel on each of the P workers arranged in a ring
network topology.

Ranking via Robust Binary Classification
Hyokun Yun1, Parameswaran Raman2, S.V.N. Vishwanathan1,2

Amazon1, University of California Santa Cruz2

What is RoBiRank?
A Robust and Scalable Ranking algorithm:

• Optimizes for quality on top of the ranking list

• Directly bounds NDCG (popular evaluation metric for ranking)

• Can be e�ciently parallelized and scales to very large datasets

• Demonstrates competitive results on both small-medium and large datasets

Robust Classification
Setup: (x1, y1), (x2, y2), . . . , (xn, yn) with xi 2 Rd and yi 2 {�1, +1}.

• Binary Classification aims to minimize the number of mistakes in the dataset:

L(!) =

nX

i=1

I(yi · hxi, !i < 0).

L(!) =

nX

i=1

�(yi · hxi, !i). (Non-robust)

When �(t) = log2 (1 + 2�t), we get logistic regression.
When �(t) = max (1 � t, 0), we get SVM.

�3 �2 �1 0 1 2 3

0

1

2

3

4

margin

lo
ss

0-1 loss: I(· < 0)
logistic loss: �(·)

hinge loss

However, Convex objective functions are sensitive to outliers.

• Using following transformations,

⇢1(t) = log2(t + 1), ⇢2(t) := 1 � 1

log2(t + 2)
,

we can bend the loss functions to get:

L1(!) =

nX

i=1

⇢1 (�(yi · hxi, !i)) , (Robust Type I)

L2(!) =

nX

i=1

⇢2 (�(yi · hxi, !i)) . (Robust Type II)

�5�4�3�2�1 0 1 2 3 4 5

0

1

2

3

4

5

t

lo
ss

�(t)
�1(t) := ⇢1 (�(t))
�2(t) := ⇢2 (�(t))

–As t ! 1, Type I loss function goes to 1 at a much slower rate

–Even if t ! 1, Type II loss function does not go to 1.

–Type II loss function has stronger statistical guarantees.

–Type I loss function is easier to optimize, since its gradient does not vanish.

Learning to Rank
Notations:

• X = set of users, Y = set of items, rxy = rating user x gave to item y

•�(x, y) 2 Rd: extracted feature between x and y, ! 2 Rd: model parameter

• f!(x, y) := h�(x, y), !i: the score model assigns to item y for user x

Rank of an item y for user x can be defined as:

rank!(x, y) =
X

y02Yx,y06=y

I (f!(x, y) � f!(x, y0) < 0) .

Using this, objective function for ranking can be expressed as:

L(!) =
X

x2X

X

y2Yx

rxy

X

y02Yx,y06=y

� (f!(x, y) � f!(x, y0)) .

Discounted Cumulative Gain (DCG):

DCG(!) =
X

x2X

X

y2Yx

rxy

log2 (rank!(x, y) + 2)
,

Gain of an item degrades logarithmically based on its rank

It turns out, Maximizing DCG , Minimizing Robust version of L(!)

L2(!) =
X

x2X

X

y2Yx

rxy · ⇢2

0
@ X

y02Yx,y06=y

� (f!(x, y) � f!(x, y0))

1
A . (Robust Type II)

To avoid the vanishing gradient problem, our proposed method - RoBiRank, optimizes:

L1(!) =
X

x2X

X

y2Yx

rxy · ⇢1

0
@ X

y02Yx,y06=y

� (f!(x, y) � f!(x, y0))

1
A . (Robust Type I)

•Results on small-medium datasets:

2 4 6 8 10 12 14 16 18 20
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

k

N
D

C
G

@
k

TD 2004

RoBiRank
RankSVM
LSRank

InfNormPush
IRPush

2 4 6 8 10 12 14 16 18 20
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

k

N
D

C
G

@
k

TD 2004

RoBiRank
MART

RankNet
RankBoost
AdaRank

CoordAscent
LambdaMART

ListNet
RandomForests

RoBiRank shows better performance at the top as expected

Latent Collaborative Retrieval
•When the size of the data, especially Y is large,

–Generating features �(x, y) for all x and y is challenging

–Computing
P

y02Yx,y06=y � (f!(x, y) � f!(x, y0)) is expensive

–The data usually consists of implicit feedback: rxy = 0 for most (x, y).

• To avoid the feature engineering burden, let

– user parameter: U1, U2, . . . , Un 2 Rd

– item parameter: V1, V2, . . . , Vm 2 Rd

– score: f!(x, y) := hUx, Vyi,
as in matrix factorization. The objective function becomes

X

x2X

X

y2Yx

rxy · ⇢1

0
@ X

y02Yx,y06=y

� (hUx, Vyi � hUx, Vy0i)

1
A .

• To avoid calculating the summation over Y , using the following property of ⇢1(·) ,

⇢1(t) = log2(t + 1)  � log2 ⇠ +
⇠ · (t + 1) � 1

log 2
, (for any ⇠ > 0)

we linearize the objective function:

X

x2X

X

y2Yx

rxy ·

2
64� log2 ⇠xy +

⇠xy ·
⇣P

y06=y � (hUx, Vyi � hUx, Vy0i) + 1
⌘
� 1

log 2

3
75 ,

by introducing ⇠xy for each x, y with rxy 6= 0.

• If we uniformly sample (x, y, y0) from {(x, y, y0) : rxy 6= 0}, we obtain an unbiased
estimator, which allows us to take stochastic gradient with convergence guaran-
tees.

Parallelization
• User parameters and item parameters are partitioned into multiple machines

• User parameters always stay, item parameters are exchanged after each epoch

• Within each epoch, SGD updates are taken within accessible region (Stratified SGD of
Gemula et al)

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

)))

• RoBiRank scales nicely up to 32 machines (16 cores each)

0 0.5 1 1.5 2 2.5 3

·106

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

number of machines ⇥ seconds elapsed

M
ea

n
P

re
ci

si
on

@
1

RoBiRank 4
RoBiRank 16
RoBiRank 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

5 · 10�2

0.1

0.15

0.2

0.25

0.3

seconds elapsed

M
ea

n
P

re
ci

si
on

@
1

Weston et al. (2012)
RoBiRank 1
RoBiRank 4
RoBiRank 16
RoBiRank 32

Paper
Ranking via Robust Binary Classification, Hyokun Yun, Parameswaran Raman,
S.V.N.Vishwanathan, (NIPS 2014)

Figure 2: P = 4 inner-epochs of distributed SGD. Eachworker
updates mutually-exclusive blocks of data and parameters
as shown by the dark colored diagonal blocks [9].

Each iteration consist of 2P inner-epochs. During the first P
inner-epochs, eachworker sends/receives its parametersW (p) to/from
the adjacent machine and performs stochasticW (p) updates using
the block of data X (p) and parametersW (p) that it owns. The sec-
ond P inner-epochs are used to pass around theW (p) to compute
the b (p) exactly using (9).

5.2 DS-MLR Asynchronous
The performance of DS-MLR Sync can be significantly improved

by performing computation and communication in parallel. Thanks
to the double-separable nature of our objective function (10), this
can be easily achieved by applying the NOMAD algorithm [29].
The entire DS-MLR Async algorithm is described in Algorithm 2.

The algorithm begins by distributing the data and parameters
among P workers in the same fashion as in the synchronous ver-
sion. However, here we also maintain P worker queues. Initially

Algorithm 1 DS-MLR Synchronous
1: K : # classes, P : # workers, T : total outer iterations, t : outer

iteration index, s: inner epoch index
2: W (p) : weights per worker, b (p) : variational parameters per

worker
3: InitializeW (p) = 0, b (p) = 1

K
4: for all p = 1, 2, . . . , P in parallel do
5: for all t = 1, 2, . . . ,T do
6: for all s = 1, 2, . . . , P do
7: SendW (p) to worker on the right
8: ReceiveW (p) from worker on the left
9: UpdateW (p) stochastically using (13)
10: end for
11: for all s = 1, 2, . . . , P do
12: SendW (p) to worker on the right
13: ReceiveW (p) from worker on the left
14: Compute partial sums
15: end for
16: Update b (p) exactly (9) using the partial sums
17: end for
18: end for

Algorithm 2 DS-MLR Asynchronous
1: K : total # classes, P : total # workers, T : total outer iterations,
W (p) : weights per worker

2: b (p) : variational parameters per worker, queue[P]: array of P
worker queues

3: InitializeW (p) = 0, b (p) = 1
K //Initialize parameters

4: for k ∈W (p) do
5: Pick q uniformly at random
6: queue[q].push((k,wk)) //Initialize worker queues

7: end for
8: //Start P workers

9: for all p = 1, 2, . . . , P in parallel do
10: for all t = 1, 2, . . . ,T do
11: repeat
12: (k,wk) ← queue[p].pop()
13: Update wk stochastically using (13)
14: Compute partial sums
15: Compute index of next queue to push to: q̂
16: queue[q̂].push((k,wk))
17: until # of updates is equal to K
18: Update b (p) exactly (9) using the partial sums
19: end for
20: end for

the parametersW (p) are distributed uniformly at random across
the queues. The workers subsequently can run their updates in
parallel as follows: each one pops a parameter wk out the queue,
updates it stochastically and pushes it into the queue of the next
worker. Simultaneously, each worker also records the partial sum
(the local contribution of each worker towards the global normal-
ization constant ∑K

k=1 exp (w
T
k xi)) that is required for updating the

variational parameters. This process repeats until K updates have

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

xx
x

x

x

x

x
x

x
x

x

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

xx
x

x

x

x

x
x

x
x

xx

xx
xx

(a) Initial assignment ofW and
X . Each worker works only on
the diagonal active area in the
beginning.

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

x

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

xx
x

x

x

x

x
x

x
x

xx

xx
xx

(b) After a worker finishes pro-
cessing column k , it sends the
corresponding item parameter
wk to another worker. Here,w2
is sent from worker 1 to 4.

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

x

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

xx
x

x

x

x

x
x

x
x

xx

xx
xx

(c) Upon receipt, the column is
processed by the new worker.
Here, worker 4 cannowprocess
column 2 since it owns the col-
umn.

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

x

x

x
x

x
xx

x

x
x

x

x
x

xx
x

x

x
x

x

xx
x

x
x

x

x

x

x

x

xx
x

x

x

x

x
x

x
x

xx

xx
xx

(d) During the execution of the
algorithm, the ownership of
the global parameters (weight
vectors) wk changes.

Figure 3: Illustration of the communication pattern in DS-
MLRAsync algorithm. Parameter vectorwk is exchanged in
a de-centralized manner across workers without the use of
any parameter servers [14].

been made which is equivalent to saying that each worker has
updated every parameter wk . Following this, the worker updates
all its variational parameters b (p) exactly using the partial sums
(9). For simplicity of explanation, we restricted Algorithm 2 to P
workers on a single-machine. However, in our actual implemen-
tation, there are multiple threads running on a single machine in
addition to multiple machines sharing the load across the network.
Therefore, in this setting, each worker (thread) first passes around
the parameter wk across all the threads on its machine. Once this
is completed, the parameter is tossed onto the queue of the first
thread on the next machine.

6 CONVERGENCE ANALYSIS
In this section, we present the convergence analysis of DS-MLR.
The flavor of stochasticity we use in DS-MLR is sampling without
replacement [21], which is also popularly known as Incremental Gra-
dient Descent [15], [2] and is found to converge faster2 in practice
than vanilla sampling with replacement SGD [12]. For the asynchro-
nous case, we make an additional assumption which is a sufficient
condition to characterize gradient delays. Such a condition has
been widely used to prove convergence of asynchronous SGD al-
gorithms as discussed in [30]. Theorem 1 presents the rate for the
synchronous version of DS-MLR.

Theorem 1. Suppose all ∥xi ∥ ≤ r for a constant r > 0. Let the step
size ηt in (13) decay at the rate of η0√

t
where η0 is a carefully tuned

2[2] outlines exact conditions under which Incremental Gradient Descent converges
namely: diminishing step sizes and choosing indices in a cyclic order, and re-shuffling
at the end of cycle. Our implementation of DS-MLR follows these guidelines closely.

hyper-parameter. Then, under standard assumptions of smoothness,
strong convexity, lipschitz hessian and bounded gradients,

E[∥wt,n
k −w∗k ∥2] ≤

∥w1,n
k −w∗k ∥2 +

2η20M2
η0M1−1√

t
, ∀t = {1, 2, . . . ,T }

(14)

where wt,n
k is value of parameter vector wk at outer and inner itera-

tions indexed by t and n respectively, w∗k is the optimal solution, xi
denotes the data point, M1 = nC4 and M2 = n2C5 (where constants
C4 and C5 depend on L and µ).

Proof is available in Appendix A. The key steps in our analysis
are as follows:
• First, for the t-th iteration, we introduce a random variable
Rt to absorb the effects of re-shuffling the indices within the
epoch by closely following results in [12].
• Second, to account for the delay and staleness in updates for
wk in the inner-iterations, we prove and make use of Lemma
2 to bound the staleness in ∇fi .
• Finally, we prove our main result using a proof by induction
(see Lemma 3) argument revealing the 1√

t
rate.

Remark: Our analysis can also be easily adapted to prove 1
t

rate using step-size of η0
t . However, in practice, we found η0√

t
to be

slightly more stable. Using an assumption on boundedness of the
delay, we can use of results in [30] to achieve 1√

t
rates for DS-MLR

Async for a suitable diminishing step-size sequence.

7 EXPERIMENTAL RESULTS
In our empirical study, we analyze the behavior of DS-MLR Async
by running it on several real-world datasets of varying scale. Table
3 provides a summary of their characteristics.

Hardware: All single-machine experiments were run on a clus-
ter with the configuration of two 8-core Intel Xeon-E5 processors
and 32 GB memory per node. For multi-machine multi-core, we
used Intel vLab Knights Landing (KNL) cluster with node config-
uration of Intel Xeon Phi 7250 CPU (64 cores, 200GB memory),
connected through Intel Omni-Path (OPA) Fabric.

Implementation Details: We implemented DS-MLR in C++
using MPI for communication across nodes and Intel TBB for con-
current queues and multi-threading. To make the comparison fair,
we re-implemented the LC [11] method in C++ and MPI using AL-
GLIB for inner optimization. For the L-BFGS baseline, we used the
TAO solver (from PETSc). Although, there exist numerous data and
model parallel methods, we use these as representative baselines.

Reproducibility: The hyper-parameter values and node config-
uration used in our experiments are in Table 3. Code and scripts
required for reproducing the experiments are readily available for
download from https://bitbucket.org/params/dsmlr. The repository
includes instructions to compile and run the code and scripts to
launch the jobs on a HPC cluster with similar capability as ours.

7.1 Comparison with other methods
7.1.1 SMALL SCALE DATASETS.
CLEF, NEWS20, LSHTC1-small: For this experiment, we com-
pare DS-MLR, L-BFGS and the LC methods on small scale datasets

which can easily fit in the memory of a single machine and therefore
require no parallelism. In such scenarios, a second order methods

100 101 102 103
1.45

1.5

1.55

1.6

1.65

time (secs)

ob
je
ct
iv
e

NEWS20 dataset: P=1×1×1, λ = 8.881e − 05, η = 1e4

DS-MLR
L-BFGS
LC

10−1 100 101 102 103 104 105

1

2

3

4

time (secs)

ob
je
ct
iv
e

CLEF dataset: P=1×1×1, λ = 0.001, η = 1e2

DS-MLR
L-BFGS
LC

101 102 103 104
0

0.2

0.4

0.6

0.8

1

time (secs)

ob
je
ct
iv
e

LSHTC1-small dataset: P=1×1×1, λ = 2.2406e − 07, η = 1e4

DS-MLR
L-BFGS
LC

Figure 4: Data and Model both fit in memory. In each plot,
P=N×M×T denotes that there are N nodes each running M
mpi tasks, with T threads each. λ and η refer to regulariza-
tion and learning-rate.

such as L-BFGS are theoretically expected to out-perform stochastic
methods due their superior quadratic convergence rates. In our ex-
periments, we observed that it is indeed the case. When comparing
DS-MLR against LC (which is our model parallel baseline method)
we found that DS-MLR consistently shows a faster decrease in
objective value compared to LC on all three datasets: NEWS20,
LSHTC1-small and CLEF. LC stalls towards the end and progresses
very slowly as seen in the plots. Figure 4 shows the progress of
objective function as a function of time for DS-MLR, L-BFGS and
LC on the three datasets.

7.1.2 LARGE SCALE DATASETS.
LSHTC1-large: L-BFGS requires all its parameters to fit on one
machine and is therefore not suited for model parallelism (even
a modest dataset such as LSHTC1-large requires ≈ 4.2 billion pa-
rameters or ≈ 34GB). Thus, parallelizing L-BFGS would involve
duplicating 34 GB of parameters across all its processors. We ran
both DS-MLR and LC using 48 workers. Figure 1b (left) shows how
the objective function changes vs time for DS-MLR and LC. As can
be seen, DS-MLR out performs LC by a wide-margin despite the
advantage LC has by duplicating data across all its processors.

ODP: We ran DS-MLR on ODP dataset 3 which has a huge model
parameter size of 355 GB. For this experiment we used 20 nodes ×
1 mpi task × 260 threads. The progress in decreasing the objective
function value is shown in Figure 1b (center). LC method being a
second-order method has a very high per-iteration cost and it takes
an enormous amount of time to finish even a single iteration.

YouTube8M-Video: This dataset was created by pre-processing
the publicly available dataset of youtube video embeddings 4 into
3https://github.com/JohnLangford/vowpal_wabbit/tree/master/demo/recall_tree/
odp
4https://research.google.com/youtube8m/

https://bitbucket.org/params/dsmlr
https://github.com/JohnLangford/vowpal_wabbit/tree/master/demo/recall_tree/odp
https://github.com/JohnLangford/vowpal_wabbit/tree/master/demo/recall_tree/odp
https://research.google.com/youtube8m/

Dataset # instances # features #classes data (train + test) parameters sparsity (% nnz) Node configuration Hyper-parameter values
CLEF 10,000 80 63 9.6 MB + 988 KB 40 KB 100 P=1×1×1 λ = 0.001, η = 1e2

NEWS20 11,260 53,975 20 21 MB + 14 MB 9.79 MB 0.21 P=1×1×1 λ = 8.881e − 05, η = 1e4
LSHTC1-small 4,463 51,033 1,139 11 MB + 4 MB 465 MB 0.29 P=1×1×1 λ = 2.2406e − 07, η = 1e4
LSHTC1-large 93,805 347,256 12,294 258 MB + 98 MB 34 GB 0.049 P=4×1×12 λ = 1e − 7, η = 20e4

ODP 1,084,404 422,712 105,034 3.8 GB + 1.8 GB 355 GB 0.0533 P=20×1×260 λ = 9.221e − 7, η = 1e5
YouTube8M-Video 4,902,565 1,152 4,716 59 GB + 17 GB 43 MB 100 P=4×1×260 λ = 2.039e − 7, η = 1e5

Reddit-Small 52,883,089 1,348,182 33,225 40 GB + 18 GB 358 GB 0.0036 P=20×1×260 λ = 1e − 19, η = 5e10
Reddit-Full 211,532,359 1,348,182 33,225 159 GB + 69 GB 358 GB 0.0036 P=40×1×250 λ = 1e − 19, η = 4e10

Table 3: Characteristics of the datasets used and experimental settings (P = N ×M × T denotes N nodes each running M mpi
tasks, with T threads each)

a multi-class classification dataset consisting of 4,716 classes and
1,152 features. Since it was created from features derived from
embeddings, it is a dense dataset. We used the configuration of 4

0 1 2 3
·105

0

20

40

60

time (secs)

ob
je
ct
iv
e

Youtube-Video dataset: P=4×1×260, λ = 2.039e − 7, η = 1e5

DS-MLR

(a) Data does not fit and
Model fits.

0 2 4 6 8
·105

10

10.5

11

11.5

time (secs)

ob
je
ct
iv
e

Reddit-Small dataset: P=20×1×260, λ = 1e − 19, η = 5e10

DS-MLR

(b) Data does not fit and
Model does not fit.

Figure 5

nodes × 1 mpi tasks × 260 threads to run DS-MLR on this dataset
and we observed a fast convergence as shown in Figure 5a. This
is likely because DS-MLR being non-blocking and asynchronous
in nature runs at its peak performance on a dense dataset such
as YouTube8M-Video, since the number of non-zeros in the data
remains uniform across all its workers.

Reddit datasets: In this sub-section, we demonstrate the ca-
pability of DS-MLR to solve a multi-class classification problem
of massive scale, on a new benchmark dataset RedditFull which
we created out of 1.7 billion reddit user comments spanning the
period 2007-2015. Our aim is to classify a particular reddit comment
into a suitable sub-reddit. The data and model parameters occupy
228 GB and 358 GB respectively. Therefore, both L-BFGS and LC
cannot be applied here. We also created a smaller subset of this
dataset Reddit-Small by sub-sampling around 50 million data points.
The result of running DS-MLR on these two datasets are shown in
Figure 5b and Figure 1b (right) respectively.

7.2 Predictive performance of DS-MLR
In this section, we plot the cumulative distribution function (CDF)
of ranks of test labels. This is a proxy for the precision@k curve
and gives a more closer indication of the predictive performance
of a multinomial classification algorithm. In Figure 6, we plot the
precision obtained after the first 5 iterations (denoted by dashed
lines), and after the end of optimization (denoted by solid lines).
As seen, DS-MLR performs competitively well compared to other

methods in all datasets, and in general tends to give a good accuracy
within the first 5 iterations. Using roughly 1

4 top-k classes was enough
to get a predictive performance of around 95% in all datasets.

0 10 20 30 40 50 600.9

0.92

0.94

0.96

0.98

1

K (number of classes)
CD

F
of

ra
nk

di
st
rib

ut
io
n

CLEF dataset

DS-MLR iter 5
DS-MLR end
L-BFGS iter 5
L-BFGS end
LC iter 5
LC end

0 5 10 15 200.85

0.9

0.95

1

K (number of classes)

CD
F
of

ra
nk

di
st
rib

ut
io
n

NEWS20 dataset

DS-MLR iter 5
DS-MLR end
L-BFGS iter 5
L-BFGS end
LC iter 5
LC end

0 200 400 600 800 1,000 1,200

0.4

0.6

0.8

1

K (number of classes)

CD
F
of

ra
nk

di
st
rib

ut
io
n

LSHTC1-small dataset

DS-MLR iter 5
DS-MLR end
L-BFGS iter 5
L-BFGS end
LC iter 5
LC end

Figure 6: Cumulative distribution function (CDF) of predic-
tive ranks of the test labels for three sample datasets. DS-
MLR performs competitively well within the first 5 itera-
tions. Using roughly 1

4 top-k classes was enough to get a pre-
dictive performance of around 95% in all datasets.

7.3 Scaling behavior of DS-MLR

104 105 106
0

20

40

60

seconds × machines × cores × threads

ob
je
ct
iv
e

YouTube8M-Video dataset

workers=1
workers=2
workers=4
workers=8
workers=16

104 105 106

0

0.2

0.4

seconds × machines × cores × threads

te
st
m
ic
ro
-f1

YouTube8M-Video dataset

Figure 7: Scalability analysis of DS-MLR on YouTube8M-
Video dataset: Change in objective function and test f1-score
vs computation time varying the # of workers (machines).

In Figures 7 and 8, we analyze the scaling behavior of DS-MLR un-
der the settings of multi-machine and multi-thread parallelism. We
picked a dataset for each of these scenarios: YouTube8M-Video and

104 105 106
0

2

4

6

seconds × machines × cores × threads

ob
je
ct
iv
e

LSHTC1-large dataset

workers=1
workers=2
workers=4
workers=8
workers=16
workers=20

104 105 106
0.15

0.2

0.25

0.3

seconds × machines × cores × threads

te
st
m
ic
ro
-f1

LSHTC1-large dataset

Figure 8: Scalability analysis of DS-MLR on LSHTC1-large
dataset - Change in objective function and test f1-scores vs
computation time varying the # of workers (threads).

LSHTC1-large respectively. We plot the rate of change in objective
function as well as the f-score as the number of workers (# machines
× # cores × # threads) is varied. For YouTube8M-Video dataset, we
vary the number of machines as 1, 2, 4, 8, 16. For LSHTC1-large,
DS-MLR can handle this dataset on a single machine, therefore,
we simply vary the number of threads on a single machine (as a
single mpi task) as 1, 2, 4, 8, 16, 20. In an ideal scenario with linear
scaling, we would expect all the figures to overlap with each other.
From the plot we observe that multi-thread behavior is pretty close
to the ideal behavior while in multi-machine case there is some
slowdown with 8 and 10 workers. This is most likely due to the
communication and network overheads in the cluster.

8 CONCLUSION
In this paper, we present a novel distributed stochastic optimiza-
tion algorithm DS-MLR to solve multinomial logistic regression
problems having large number of examples and classes. By exploit-
ing double-separability, we present a reformulation that is hybrid
parallel (both data and model parallel simultaneously). DS-MLR is
able to perfectly partition the workload across P workers, costing
O (ND

P) storage for data andO (KDP +
N
P) for the model. As a result,

DS-MLR can scale to arbitrarily large datasets. DS-MLR is fully
de-centralized unlike the parameter-server architecture. Parameter
updates are directly exchanged asynchronously across workers,
eliminating the need for any intermediate servers. We provide em-
pirical results showing DS-MLR applies to all regimes of distributed
machine learning, especially the case where both data and model
sizes exceed the memory capacity of a single machine. To show this,
we created a benchmark dataset (Reddit-Full) to run extreme multi-
class classification with 228 GB data and 358 GB parameters. Future
directions of work include topics such as extreme multi-label clas-
sification [1], [13] and log-linear parameterization for undirected
graphical models which exhibit similar computational challenges.

9 ACKNOWLEDGMENTS
The authors would like to thank C. Seshadhri for valuable inputs on
the manuscript. This research was supported by NSF grant 1546459.

REFERENCES
[1] R. Agrawal, A. Gupta, Y. Prabhu, andM. Varma. Multi-label learning with millions

of labels: Recommending advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web, pages 13–24. ACM, 2013.

[2] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for
convex optimization: A survey. Optimization for Machine Learning, 2010(1-38):3,
2011.

[3] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010. Springer, 2010.

[4] G. Bouchard. Efficient bounds for the softmax function, applications to inference
in hybrid models. 2007.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine Learning, 3(1):1–122, 2011.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, England, 2004.

[7] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. Map-
reduce for machine learning on multicore. In Advances in neural information
processing systems, pages 281–288, 2007.

[8] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He,
M. Lambert, B. Livingston, et al. The youtube video recommendation system. In
Proceedings of the fourth ACM conference on Recommender systems, pages 293–296.
ACM, 2010.

[9] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factoriza-
tion with distributed stochastic gradient descent. ACM, 2011.

[10] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[11] S. Gopal and Y. Yang. Distributed training of large-scale logistic models. In
Proceedings of the 30th International Conference on Machine Learning (ICML-13),
pages 289–297, 2013.

[12] J. Z. HaoChen and S. Sra. Random shuffling beats sgd after finite epochs. arXiv
preprint arXiv:1806.10077, 2018.

[13] H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 935–944. ACM, 2016.

[14] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter
server for distributed machine learning. In Big Learning NIPS Workshop, 2013.

[15] A. Nedić and D. Bertsekas. Convergence rate of incremental subgradient algo-
rithms. In Stochastic optimization: algorithms and applications, pages 223–264.
Springer, 2001.

[16] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[17] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, 2nd edition, 2006.

[18] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in Neural Information Processing
Systems, pages 693–701, 2011.

[19] H. E. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

[21] O. Shamir. Without-replacement sampling for stochastic gradient methods. In
Advances in Neural Information Processing Systems, pages 46–54, 2016.

[22] P. Watcharapichat, V. L. Morales, R. C. Fernandez, and P. Pietzuch. Ako: De-
centralised deep learning with partial gradient exchange. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, pages 84–97. ACM, 2016.

[23] L. Xiao, A. W. Yu, Q. Lin, and W. Chen. Dscovr: Randomized primal-dual block
coordinate algorithms for asynchronous distributed optimization. arXiv preprint
arXiv:1710.05080, 2017.

[24] P. Xie, J. K. Kim, Y. Zhou, Q. Ho, A. Kumar, Y. Yu, and E. P. Xing. Distributed
machine learning via sufficient factor broadcasting. CoRR, 2015.

[25] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,
and Y. Yu. Petuum: a new platform for distributed machine learning on big data.
Big Data, IEEE Transactions on, 2015.

[26] I. E.-H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. Dhillon. Pd-sparse : A primal
and dual sparse approach to extreme multiclass and multilagrawal2013multoabel
classification. In Proceedings of The 33rd International Conference on Machine
Learning, pages 3069–3077, 2016.

[27] H. Yun. Doubly Separable Models. PhD thesis, Purdue University West Lafayette,
2014.

[28] H. Yun, P. Raman, and S. Vishwanathan. Ranking via robust binary classification.
In Advances in Neural Information Processing Systems, 2014.

[29] H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon. Nomad: Non-
locking, stochastic multi-machine algorithm for asynchronous and decentralized
matrix completion. 2013.

[30] X. Zhang, J. Liu, and Z. Zhu. Taming convergence for asynchronous stochastic
gradient descent with unbounded delay in non-convex learning. arXiv preprint
arXiv:1805.09470, 2018.

[31] Y. Zhuang, Y.-C. Juan, and C.-J. Lin. A fast parallel stochastic gradient method
for matrix factorization in shared memory systems. 2013.

[32] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient
descent. In Advances in Neural Information Processing Systems, pages 2595–2603,
2010.

http://www.deeplearningbook.org

A DETAILS OF THE ANALYSIS AND PROOF
OF THEOREM 1

In DS-MLR, for each epoch t ∈ {1, . . . ,T }, where T is the total
number of iterations, the algorithm performs the following In-
cremental Gradient Descent steps: (a) Re-shuffle the indices of the
data points {x}ni=1, (b) Cyclically scan the index-set picking each
data point xi and make stochastic gradient updates for wk using
(xi ,wk) ∀k ∈ {1, . . . ,K }.

Since in Algorithm 1, bi is updated in closed-form using (9), we
can optimize B out from F (W ,B), thereby working with F (W).

F (W) = F (w1, . . . ,wK) =
N∑
i=1

K∑
k=1

fki (wk) =
1
n

n∑
i=1

fi (W) (15)

where fi (W) = λ
2 ∥W ∥2 −wT

yi xi + log
∑K
k=1 exp(w

T
k xi). Clearly, fi

has the variational representation,

fi (W) =
λ

2 ∥W ∥
2 −wT

yi xi + min
ai ∈R



−bi +

K∑
k=1

exp
(
wT
k xi + bi

)

− 1

(16)
Modeling the effects of re-shuffling indices per epoch:

Let us assume a permutation function σt (·): [n]→ [n], that pro-
duces a permutation of the indices of the data points {xi }ni=1 at the
beginning of every epoch t . The update for wk can be then written
as follows:

wt,m
k = wt,m−1

k − ηt∇fσt (m)

(
wt,m−1
k

)
(17)

for 1 ≤ m ≤ n. Here wt,m
k represents them-th iterate within the

t-th epoch. ηt is the step-size per epoch which is decayed as per
the rule: ηt = η0√

t
, after choosing a carefully tuned value for η0. We

define a random variable Rt to capture the gradient error due to
the random re-shuffling of indices every epoch. Rt is defined as,

Rt =
n∑
i=1
∇fσt (i)

(
wt,i−1
k

)
−

n∑
i=1
∇fσt (i)

(
wt,0
k

)
(18)

Modeling staleness in incremental gradient updates:
We are not able to make increment gradient updates using the
optimal wt,n

k for the inner-iterations {1, 2, . . . ,n} as they remain
stale during the inner-iterations. As a result of this, the variational
parameter bi calculated are also stale. This could affect the conver-
gence and needs to be factored into the analysis. Lemma 2 shows
that despite the staleness, the incremental gradient computed in
these n inner-iterations atwt,n

k is not too far from the true gradient
at wt

k .

Lemma 2. Denote the approximate gradient of fσ (i) evaluated at
wt,n
k based on bti as

G̃t
k = (g̃1, . . . , g̃K), (19)

where g̃c = λwt
k,c − [yi = c]xi + exp(xTi wt

k,c + a
t
i)xi .

Then

G̃
t
k − ∇fi (wt

k)

 ≤ r

K

w

t,n
k −wt

k

.

Proof. Unfolding the term bti ,

g̃c − ∂

∂wc
fi (w

t
k) =

*.
,

exp(xTi w
t
k,c)∑K

c=1 exp(x
T
i w

t
c)
−

exp(xTi w
t
k,c)∑K

c=1 exp(x
T
i w

t
k,c)

+/
-
xi

Therefore

G̃ − ∇fi (w
t
k)

 ≤ r
√
K

�������

1∑K
c=1 exp(x

T
i w

t
c)
− 1∑K

c=1 exp(x
T
i w

t
k,c)

�������
So it suffices to upper bound the gradient of 1/∑K

c=1 exp(x
T
i wc).

Since xi and wc are bounded, exp(xTi wc) is lower bounded by a
positive universal constant 5. Now,

∇w 1∑K

c=1 exp(x
T
i wc)

=

1
(
∑K
c=1 exp(x

T
i wc))2

(exp(x
T
i w1)xi , . . . , exp(xTi wK)xi)

≤
√
K

K2 r

□

Next, we bound some quantities that will prove to be useful later.

∇fi (w)

 ≤ B by assumption of bounded gradient Without loss
of generality, suppose fk is used for update at step k . Then wt

k
is subtracted by ηt

N (λwt
k − xk ⊗ e′yk + G̃

t
k), where ⊗ is Kroneker

product and ec is a canonical vector. As long as ηt ≤ 1
λ , we can

recursively apply Lemma 2 and derive bounds

w
t
k −wt

 ≤

k

N
ηt r , (20)

∇fk (w
t
k) − G̃t

k

 ≤ ηt r , (21)

G̃
t
k

 ≤ r , (22)

for all k .
Deriving the main result:

For one epoch, we have the following inequality,

∥wt,n
k −w∗k ∥2

= ∥wt,0
k −w∗k ∥2 − 2ηt

〈
wt,0
k −w∗k ,

n∑
i=1
∇fσt (i)

(
wt,i−1
k

)〉

+ η2t

n∑
i=1
∇fσt (i)

(
wt,i−1
k

)

2
(23)

= ∥wt,0
k −w∗k ∥2 − 2ηt

〈
wt,0
k −w∗k ,n∇F

(
wt,0
k

)〉︸ ︷︷ ︸
− 2ηt

〈
wt,0
k −w∗k ,Rt

〉
+ η2t

n∇F
(
wt,0
k

)
+ Rt

2 (24)

≤ ∥wt,0
k −w∗k ∥2 − 2nηt

(
Lµ

L + µ
∥wt,0

k −w∗k ∥2 +
1

L + µ
∥∇F

(
wt,0
k

)
∥2

)
︸ ︷︷ ︸

− 2ηt
〈
wt,0
k −w∗k ,Rt

〉
+ 2n2η2t ∥∇F

(
wt,0
k

)
∥2 + 2η2t ∥Rt ∥2 (25)

=

(
1 − 2nηt Lµ

L + µ

)
∥wt,0

k −w∗k ∥2 −
(
2nηt
L + µ

− 2n2η2t
)
∥∇F

(
wt,0
k

)
∥2

− 2
〈
wt,0
k −w∗k ,Rt

〉
+ 2η2t ∥Rt ∥2 (26)

where the inequality is due to Theorem 2.1.11 in [16].

5If one is really meticulous and notes that ∥w ∥2 ≤ 2λ logK which does involve K ,
one should be appeased that exp(

√
logK) is o (Kα) for any α > 0.

Take the expectation of (26) over permutation σt (·), we get:
E[∥wt,n

k −w∗k ∥2]

≤
(
1 − 2nηt Lµ

L + µ

)
∥wt,0

k −w∗k ∥2 −
(
2nηt
L + µ

− 2n2η2t
)
∥∇F

(
wt,0
k

)
∥2

− 2
〈
wt,0
k −w∗k ,E[Rt]

〉︸ ︷︷ ︸
T1

+ 2η2tE[∥Rt ∥2]︸ ︷︷ ︸
T2

(27)

Terms T1 and T2 which involve Rt capture the random effects.
To bound them, we make use of Lemma 1 and Lemma 3 presented
in [12] and obtain higher-order powers of ηt as O (η3t), O (η4t), and
O (η5t). Following these steps, the expectation in (27) can be written
as,
E[∥wt,n

k −w∗k ∥2]

≤
(
1 − 2nηt Lµ

L + µ

)
∥wt,0

k −w∗k ∥2 +
(
2n2η2t −

2nηt
L + µ

)
∥∇F

(
wt,0
k

)
∥2

+ η3tnC1 + η
5
tn

5C2 + η
4
tn

4C3 (28)

where C1 = 2
µ L

2B2, C2 = 2
µ L

4B2, C3 = 1
2L

2B2.
Using (22) to bound ∥∇F

(
wt,0
k

)
∥2 and using constants C4 =

2Lµ
L+µ , C5 = 2r2 and C6 = 2r 2

L+µ , we simplify (28) as:

E[∥wt,n
k −w∗k ∥2] ≤

(
1 − ηtnC4

)
∥wt,0

k −w∗k ∥2 + η2tn2C5 − ηtnC6

+ η3tnC1 + η
5
tn

5C2 + η
4
tn

4C3 (29)
The term involvingC6 can be dropped to maintain the inequality,

since nC6 > 0. Since ηt is monotonically decreasing, we can ignore
the higher-order terms and further simplify the expectation as:

E[∥wt,n
k −w∗k ∥2] ≤

(
1 − ηtnC4

)
∥wt,0

k −w∗k ∥2 + η2tn2C5 (30)

For simplicity, we denoteM1 = nC4 andM2 = n2C5. In addition,
let Et =

√
t E[∥wt,n

k −w∗k ∥2]. Also note that, the iterate during the
first inner-iteration of t-th epoch wt,0

k is the same as the iterate
during the last inner-iteration of the (t − 1)-th epochwt−1,n

k . Using
these, (30) can be written in the form of a recursive inequality,

Et+1√
t + 1

≤ (1 − ηtM1)
Et√
t
+ η2tM2 (31)

=

(
1 − η0√

t
M1

)
Et√
t
+
η20
t
M2 (32)

Multiplying both sides by
√
t + 1,

Et+1 ≤
(
1 − η0√

t
M1

) √
t + 1√
t

Et +

√
t + 1
t

η20M2 (33)

We now state the following inequalities which we will use to
further simplify the bound in (33),

√
t + 1√
t
≤
√
t + 1√
t

∀t > 0, (34)
√
t + 1
t

≤ 2√
t

∀t > 0, (35)
√
t + 1√
t
≥ 1 ∀t > 0 (36)

Using (34) and (35), the recursive expectation in (33) becomes,

Et+1 ≤
(
1 − η0√

t
M1

) √
t + 1√
t

Et +
2√
t
η20M2 (37)

=

(√
t + 1√
t
−
√
t + 1√
t

η0√
t
M1

)
Et +

2√
t
η20M2 (38)

≤
(√

t + 1√
t
− η0√

t
M1

)
Et +

2√
t
η20M2 (39)

where the last inequality uses (36). Assuming η0M1 > 1, we get

Et+1 ≤
(
1 − η0M1 − 1√

t

)
Et +

2√
t
η20M2 (40)

We now apply the following Lemma 3 to (40) which finally leads
to the main result presented in Theorem 1. Lemma 3 is proved by
proof of induction.

Lemma 3. With Et =
√
t E[∥wt,n

k − w∗k ∥2], M1 = nC4 and
M2 = n2C5 (where constants C4 and C5 depend on L and µ), we can
bound the expectation for t-th iteration relative to the first iteration
as follows,

Et ≤ E1 +
2η20M2

η0M1 − 1 (41)

Proof. (40) can be written as,

Et+1 ≤
(
1 − η0M1 − 1√

t

)
Et +

2√
t
η20M2 (42)

≤
(
1 − η0M1 − 1√

t

)
*
,
E1 +

2η20M2
η0M1 − 1

+
-
+

2√
t
η20M2 (43)

≤
(
1 − η0M1 − 1√

t

)
E1 +

2η20M2
η0M1 − 1 −

*
,

η0M1 − 1√
t

· 2η20M2
η0M1 − 1

+
-
+
2η20M2√

t
(44)

=

(
1 − η0M1 − 1√

t

)
E1 +

2η20M2
η0M1 − 1 ≤ E1 +

2η20M2
η0M1 − 1 (45)

□

	Abstract
	1 Introduction
	1.1 Motivation for Hybrid Parallelism
	1.2 Our main contributions

	2 Related Work
	3 Multinomial Logistic Regression
	4 Doubly-Separable Multinomial Logistic Regression (DS-MLR)
	5 Distributing the Computation of DS-MLR
	5.1 DS-MLR Synchronous
	5.2 DS-MLR Asynchronous

	6 Convergence Analysis
	7 Experimental Results
	7.1 Comparison with other methods
	7.2 Predictive performance of DS-MLR
	7.3 Scaling behavior of DS-MLR

	8 Conclusion
	9 Acknowledgments
	References
	A Details of the Analysis and Proof of Theorem 1

