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Abstract

Hybrid-Parallel Parameter Estimation for Frequentist and Bayesian

Models

by

Parameswaran Raman

Distributed algorithms in machine learning follow two main flavors: horizontal partitioning,

where the data is distributed across multiple slaves and vertical partitioning, where the

model parameters are partitioned across multiple machines. The main drawback of the

former strategy is that the model parameters need to be replicated on every machine. This

is problematic when the number of parameters is very large, and hence cannot fit in a single

machine. This drawback of the latter strategy is that the data needs to be replicated on each

machine, thus failing to scale to massive datasets.

The goal of this thesis is to achieve the best of both worlds by partitioning both -

the data as well as the model parameters, thus enabling the training of more sophisticated

models on massive datasets. In order to do so, we exploit a structure that is observed in

several machine learning models, which we term as Double-Separability. Double-Separability

basically means that the objective function of the model can be decomposed into independent

sub-functions which can be computed independently. For distributed machine learning,

this implies that both data and model parameters can partitioned across machines and

stochastic updates for parameters can be carried out independently and without any locking.

Furthermore, double-separability naturally lends itself to developing efficient asynchronous

x



algorithms which enable computation and communication to happen in parallel, offering

further speedup.

Some machine learning models such as Matrix Factorization directly exhibit double-

separability in their objective function, however the majority of models do not. My work

explores techniques to reformulate the objective function of such models to cast them into

double-separable form. Often this involves introducing additional auxiliary variables that

have nice interpretations. In this direction, I have developed Hybrid Parallel algorithms

for machine learning tasks that include Latent Collaborative Retrieval, Multinomial Logistic

Regression, Variational Inference for Mixture of Exponential Families and Factorization

Machines. The software resulting from this work are available for public use under an

open-source license.
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Chapter 1

Introduction

A wide variety of machine learning tasks can be posed as a regularized risk-

minimization problem. That is, one would like to solve,

min
θ
L (θ) := λ R (θ) + Femp

X (θ) (1.1)

where, Femp
X (θ) is called the empirical data likelihood and can be often decomposed into a

finite summation over the observed data X. R (θ) is a regularizer that controls the complexity

of the model parameters θ. λ is a hyper-parameter used to trade-off between the two terms.

For ease of optimization, R (·) is assumed to be a smooth, convex function such as ‖θ‖22.

The regularized risk-minimization framework described by (1.1) generalizes a wide variety of

popular tasks in large-scale machine learning. With a suitable choice of data X, model θ and

regularizer R (θ), these tasks can be expressed as a regularized risk minimization problem.

In this work we will concern ourselves with a subset of such tasks where both the data as

well as the model are in the form of a matrix. In the literature, these are also referred to as

matrix-parametrized models [Xie et al., 2015]. We outline some of these tasks below,

1



• Multinomial Logistic Regression (MLR): We are given N data points (xi, yi)i=1,...,N ,

where each data point xi is a D-dimensional feature vector and yi is the corre-

sponding label which can take values in {1, . . . ,K}. K denotes the total number

of classes. For this model, the objective function is equivalent to minimizing the

negative log probability of the target labels yi being assigned class k, and this decom-

poses into Femp
X (W) = − 1

N

∑N
i=1

∑K
k=1 yikw

T
k xi + 1

N

∑N
i=1 log

(∑K
k=1 exp

(
wT
k xi
))

and R (W) = 1
2

∑K
k=1 ‖wk‖22, where W ∈ RD×K are the model parameters.

• Latent Collaborative Retrieval (LCR): In this setting, we aim to learn a score function

f (x, y) between a user x and item y without an explicit feature vector φ (x,y), by embed-

ding each user x and item y into a low-dimensional euclidean latent space. Observed data

consists of ratings rxy observed for user x and item y pairs. These ratings could be either

explicit (scale of 1-5) or implicit (clicks, interaction). The score function is then defined

as f (x, y) = 〈Ux,Vy〉, whereUx andVy are the latent representations of the user x and

item y respectively. A similar pairwise ranking loss can be defined as in the case of learn-

ing to rank. Thus, Femp
X (U,V) =

∑
x∈X

∑
y∈Y rxy

∑
y′∈Y,y′ 6=y σ (f (x, y)− f (x, y′))

and the regularizer is given by R (U,V) = 1
2

(
‖U‖22 + ‖V‖22

)
. The model parameters

to be learnt are U ∈ RD×K and V ∈ RD×K .

• Factorization Machines (FM): Factorization Machines proposed by [Rendle, 2010]

combine the advantages of SVMs and factorization models. The score function in FM

is parameterized using, both a linear model w ∈ RD as well as a factorized model

V ∈ RD×K . The factorized model V is used to capture all pairwise interactions between

the D features. The observations consist of data matrix X ∈ RN×D∗ and corresponding

2



labels y ∈ RN . D∗ denotes the total number of features that include the linear

interactions as well as pairwise interactions, i.e. D∗ = O
(
D + D2

2

)
. The score function

for an observation x is given by f (x) = w0+〈w,x〉+∑D
j=1

∑D
j′=1

〈
Vj ,Vj′

〉
xjxj′ . Using

this, the empirical risk term can be expressed as, Femp
X (w,V) = 1

2

∑N
i=1 l (f (xi) , yi)

and regularizer R (w,V) = 1
2

(
‖w‖22 + ‖V‖22

)
, where l (·) is an appropriate loss function

such as cross-entropy for binary classification or squared loss for regression.

We summarize these tasks more concisely in Table 1.1, where for each task, we list

the corresponding data matrix X, model parameters θ, empirical data likelihood term F (θ)

and the regularizer R (θ).

1.1 Challenges in distributed machine learning

Traditional optimization methods for distributed machine learning broadly fall into

two categories, namely Data parallel and Model parallel.

Data Parallel: The classic paradigm in distributed machine learning is to perform

data partitioning, using, for instance, a map reduce style architecture. In other words, the

data is distributed across multiple workers. At the beginning of each iteration, the master

distributes a parameter vector to all the workers, who in turn use this to compute the

objective function and gradient values on their part of the data and transmit it back to the

master. The master aggregates the results from the workers and updates the parameters,

and transmits the updates back to the workers, and the iteration proceeds. The L-BFGS

optimization algorithm is used in the master to update the parameters after every iteration

[Nocedal and Wright, 2006]. The main drawback of this strategy is that the model parameters

3
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need to be replicated on every machine. This is problematic when the number of classes,

and consequently the number of parameters is very large, and hence cannot fit in a single

machine.

Model Parallel: An orthogonal approach is to use model partitioning. Here, again,

we use a master slave architecture but now the data is replicated across each slave. However,

the model parameters are now partitioned and distributed to each machine. During each

iteration the model parameters on the individual machines are updated, and some auxiliary

variables are computed and distributed to the other workers, which use these variables in

their parameter updates. See the Log-Concavity (LC) method Gopal and Yang [2013] for

an example of such a strategy. The main drawback of this approach, however, is that the

data needs to be replicated on each machine, and consequently it does not scale to massive

datasets.

X

Data

θ

Model

(a) Data Parallelism (partition dataX, duplicate

parameters θ).

X

Data

θ

Model

(b) Model Parallelism (partition parameters θ,

duplicate data X).

Figure 1.1: Two orthogonal approaches to distributing computation in machine learning.

Figure 1.1 illustrates these two approaches. In the context of Multinomial Logistic

Regression (MLR), the data X is a O (N ×D) matrix and model θ is a O (D ×K) matrix,
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where N , D and K denote the number of examples, features and classes respectively.

Interpretation of data X and model parameters θ for the other tasks can be found in Table

1.1.

Fundamental Bottleneck in Data-only or Model-only parallelism: Machine

learning tasks of today run on humongous amounts of data involving sophisticated models

[Weston et al., 2011], [Cheng et al., 2016], [Prabhu et al., 2018]. The memory requirements for

data and model parameters can easily exceed the capacity of a single machine in a commodity

cluster. Figure 1.2 illustrates this fundamental challenge in the context of Multinomial

Logistic Regression (MLR).

LSH
TC1-sm

all

LSH
TC1-la

rge ODP

Yout
ube8M

-Vide
o

Redd
it-F

ull
101

102

103

104

105

106

max memory of commodity machine

Si
ze

in
M

B
(l

og
-s

ca
le

)

data size (MB)
parameters size (MB)

Figure 1.2: Data and Model requirements (MB) of real-world datasets for Multinomial

Logistic Regression (MLR).

As depicted in the figure, real-world datasets exhibit varying storage requirements

for the data and model. While the smaller datasets can be easily run on a single machine,

larger datasets such as ODP and Reddit-Full are impossible to run on a commodity cluster
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with just traditional data or model parallel approaches. This is because ODP has a massive

requirement of 355 GB for the model itself, while Reddit-Full dataset is even bigger, requiring

228 GB for the data and 358 GB for its model. For instance, if we were to run the MLR task

on ODP dataset using data parallelism with a modest 4 units of parallelism (cores or threads)

on a single machine, this would require a total memory footprint of 4× 355 GB ≈ 1.38 TB

on a single machine. Using a similar configuration to run MLR on the Reddit-Full dataset,

the per-machine memory footprint for data parallel methods is ≈ 1.39 TB and model parallel

methods is ≈ 912 GB. Thus, the number of parallel units we can use on a single machine is

heavily limited if we choose to replicate only one of the data or model. Inspired by these

challenges, in this thesis we explore the following broad question,

How can we achieve the best of both worlds?

i.e. Can we achieve both data as well as model parallelism simultaneously?

X

Data

θ

Model

Figure 1.3: Hybrid Parallelism partitions both data and model parameters simultaneously

without needing to duplicate either of them.

As an answer to this, we propose Hybrid Parallelism, which is the idea of partitioning

both the data matrix X as well as the model parameters θ simultaneously across workers
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such that there is no overlap is computation among the workers. This enables us to scale to

workloads with arbitrary data and model sizes.

1.2 Hybrid Parallelism

A natural question that arises is - Can all machine learning models be made Hybrid

Parallel? To answer this question, we first introduce the notion of Double Separability. Double

Separability is an attractive property in the objective functions of machine learning models

which makes them naturally amenable to Hybrid Parallelism.

1.2.1 Double Separability

The concept of Separability [Zhong et al., 2004] of functions is well-known in the

optimization community [Tseng and Mangasarian, 2001]. Given a family of sets {Si}Ni=1,

a function f :
∏N
i=1 Si → R is separable if there exist functions fi : Si → R for each

i = 1, 2, . . . , N such that f(θ) =
∑N

i=1 fi(θi) where θi ∈ Si. Extending the idea of separability

[Zhong et al., 2004] of functions which is well-known in the optimization community [Tseng

and Mangasarian, 2001], Double-Separability is formally defined as follows,

Definition 1. Double Separability Let {Si}mi=1 and {S′j}m
′

j=1 be two families of sets of param-

eters. A function f :
∏m
i=1 Si ×

∏m′

j=1 S′j → R is doubly separable if ∃ fij : Si × S′j → R for

each i = 1, 2, . . . ,m and j = 1, 2, . . . ,m′ such that:

f(θ1, θ2, . . . , θm, θ
′
1, θ
′
2, . . . , θ

′
m′) =

m∑
i=1

m′∑
j=1

fij(θi, θ
′
j) (1.2)

In simple words, if a function f in two set of parameters θ and θ′ can be decomposed

into a double-summation of sub-functions fij such that each sub-function fij depends on
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x
x

x x

x x
x

x
x

x

x x x

m

m′

fij(θi, θ
′
j)

Figure 1.4: Diagram to illustrate the decomposability of doubly-separable function f . The

highlighted diagonal blocks can be computed be computed independently and in parallel

since they do not involve overlapping parameters θ and θ′.

a pair of parameters (θi, θ
′
j), one from each set, then the function f is said to be doubly-

separable. One can think of these sub-functions fij as cells in a matrix of computations

as illustrated in Figure 1.4. For each (i, j) in the diagonal blocks, fij can be computed

independently and in parallel as it has no overlap in terms of access-patterns of parameters θ

and θ′. One can think of the dimensions m and m′ as the dimensions for data and model

parallelism respectively. The values of m and m′ differ depending on the machine learning

task at hand.

Frequentist Models: In multinomial logistic regression (MLR) for instance, the

data partitioning occurs across the examples N while the model partitioning occurs across

the classes K. Thus, m = N and m′ = K. On the other hand, in factorization machines

(FM), it is more reasonable to split the model across the features D. Therefore, m = N and

9



m′ = D.

Bayesian Models: Bayesian Models can also benefit from Hybrid Parallelism.

Mixture of exponential families model the observations as arising from a generative process

as follows:

• Draw mixing proportions Zi ∼ ∆K , where ∆K is a K-dimensional simplex.

• Draw observations X1, . . . , XN based on the mixing proportions,

Xi|Zi = k ∼ ExpFamily (θk), where ExpFamily(·) refers to an exponential family

distribution such as Gaussian or Multinomial distribution with parameter θk.

Examples of popular models that fall in this category include Latent Dirichlet Allocation

(LDA) and Gaussian Mixture Models (GMM). While the data in these mixture models can

be partitioned across N , the model can be partitioned across the K mixture components.

Thus, m = N and m′ = K.

1.2.2 Achieving Double-Separability in objective functions

Objective functions of some machine learning models such as Matrix Factorization

are directly doubly-separable [Yun et al., 2013]. Assuming the data matrix X is factorized

into low-rank matrices W ∈ RN×K and H ∈ RM×K , where N and M are the number of

users and items respectively, we can express the objective function of matrix factorization as,

L(w1,w2, . . . ,wN ,h1,h2, . . . ,hM ) =
1

2

N∑
i=1

M∑
j=1

(Xij − 〈wi,hj〉)2 (1.3)

which is directly in the doubly-separable form given in eqn (1.2). This make it easy to make

matrix factorization Hybrid Parallel. However, several learning tasks in machine learning
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are much more complicated and do not exhibit direct double-separability. They require

reformulating the original objective function in order to be converted into a desirable form

such as given in eqn (1.2).

The goal of this thesis is to study such reformulations for frequentist and bayesian

models to make them hybrid parallel.

1.3 Overview of the chapters

We now sketch the contents of the main chapters of this dissertation (each chapter

will have a separate more detailed introduction). The main results of Chapter 2, Chapter 3

and Chapter 4 have been published at NIPS 2014 [Yun et al., 2014a], KDD 2019 [Raman

et al., 2019b] and AISTATS 2019 [Zhang et al., 2019] conferences respectively. Chapter 5

will be published on arXiV as a pre-print. Chapters 2, 3 and 5 will appear together as a

journal submission.

1.3.1 Chapter 2: Latent Collaborative Retrieval

We propose RoBiRank - a Learning to Rank algorithm inspired by Robust Binary

Classification and show that it scales well on large-data. The main idea behind Robust

Binary Classification is to use transformation on convex losses to help give up performance on

hard to classify data points (outliers). Firstly, we observe that this is related to learning to

rank, where we would not mind sacrificing accuracy at the bottom of the ranking list in order

to gain performance at top of the list. We thus show that our ranking objective function can

be viewed as a generalization of robust binary classification. Secondly, minimizing RoBiRank
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is equivalent to directly maximizing DCG (a popular evaluation metric for listwise learning

to rank). As a result, RoBiRank performs really well at the top of the list. Thirdly, using a

linearization trick on our loss allows us to obtain an unbiased stochastic gradient estimator

so that our SGD optimizer becomes independent of the size of the dataset. In addition, our

algorithm is parallelizable and can also be used to solve large-scale problems without any

explicit features. Experimental results are shown on both medium and very large datasets.

1.3.2 Chapter 3: Multinomial Logistic Regression

We study the problem of scaling Multinomial Logistic Regression (MLR) to datasets

with very large number of data points in the presence of large number of classes. At a scale

where neither data nor the parameters are able to fit on a single machine, we argue that

simultaneous data and model parallelism (Hybrid Parallelism) is inevitable. The key challenge

in achieving such a form of parallelism in MLR is the log-partition function which needs to

be computed across all K classes per data point, thus making model parallelism non-trivial.

To overcome this problem, we propose a reformulation of the original objective

that exploits double-separability, an attractive property that naturally leads to hybrid

parallelism. Our algorithm (DS-MLR) is asynchronous and completely de-centralized, requiring

minimal communication across workers while keeping both data and parameter workloads

partitioned. Unlike standard data parallel approaches, DS-MLR avoids bulk-synchronization

by maintaining local normalization terms on each worker and accumulating them incrementally

using a token-ring topology.

We demonstrate the versatility of DS-MLR under various scenarios in data and

model parallelism, through an empirical study consisting of real-world datasets. In particular,
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to demonstrate scaling via hybrid parallelism, we created a new benchmark dataset (Reddit-

Full) by pre-processing 1.7 billion reddit user comments spanning the period 2007-2015.

We used DS-MLR to solve an extreme multi-class classification1 problem of classifying 211

million data points into their corresponding subreddits. Reddit-Full is a massive data set

with data occupying 228 GB and 44 billion parameters occupying 358 GB. To the best of

our knowledge, no other existing methods can handle MLR in this setting.

1.3.3 Chapter 4: Mixture of Exponential Families

Mixture of exponential family models are among the most fundamental and widely

used statistical models. Stochastic variational inference (SVI), the state-of-the-art algorithm

for parameter estimation in such models is inherently serial. Moreover, it requires the

parameters to fit in the memory of a single processor; this poses serious limitations on

scalability when the number of parameters is in billions. In this work, we present extreme

stochastic variational inference (ESVI), a distributed, asynchronous and lock-free algorithm

to perform variational inference for mixture models on massive real world datasets. ESVI

overcomes the limitations of SVI by requiring that each processor only access a subset

of the data and a subset of the parameters, thus providing data and model parallelism

simultaneously. Our empirical study demonstrates that ESVI not only outperforms VI and

SVI in wallclock-time, but also achieves a better quality solution. To further speed up

computation and save memory when fitting large number of topics, we propose a variant

ESVI-TOPK which maintains only the top k ∈ K important topics. Empirically, we found
1Extreme classification is defined as multi-class / multi-label classification in the presence of very large

number of examples and classes / labels.

13



that using top 25% topics suffices to achieve the same accuracy as storing all the topics.

1.3.4 Chapter 5: Factorization Machines

Factorization Machines (FM) are powerful class of models that incorporate higher-

order interaction among features to add more expressive power to linear models. They

have been used successfully in several real-world tasks such as click-prediction, ranking and

recommender systems. Despite using a low-rank representation for the pairwise features,

the memory overheads of using factorization machines on large-scale real-world datasets

can be prohibitively high. For instance on the criteo tera dataset, assuming a modest 128

dimensional latent representation and 109 features, the memory requirement for the model is

in the order of 1 TB. In addition, the data itself occupies 2.1 TB. Traditional algorithms

for FM which work on a single-machine are not equipped to handle this scale and therefore,

using a distributed algorithm to parallelize the computation across a cluster is inevitable. In

this work, we propose a hybrid-parallel stochastic optimization algorithm DS-FACTO, which

partitions both the data as well as parameters of the factorization machine simultaneously.

Our solution is fully de-centralized and does not require the use of any parameter servers.

We present empirical results to analyze the convergence behavior, predictive power and

scalability of DS-FACTO.
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Chapter 2

Latent Collaborative Retrieval

2.1 Introduction

Learning to rank (LTR) is a problem of ordering a set of items according to their

relevances to a given context [Chapelle and Chang, 2011]. While a number of approaches

have been proposed in the literature, in this chapter we provide a new perspective by showing

a close connection between ranking and a seemingly unrelated topic in machine learning,

namely, robust binary classification.

In robust classification [Huber, 1981], we are asked to learn a classifier in the

presence of outliers. Standard models for classification such as Support Vector Machines

(SVMs) and logistic regression do not perform well in this setting, since the convexity of their

loss functions does not let them give up their performance on any of the data points [Long

and Servedio, 2010]; for a classification model to be robust to outliers, it has to be capable of

sacrificing its performance on some of the data points. We observe that this requirement is

very similar to what standard metrics for ranking try to evaluate. Discounted Cumulative
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Gain (DCG) [Manning et al., 2008] and its normalized version NDCG, popular metrics for

learning to rank, strongly emphasize the performance of a ranking algorithm at the top of

the list; therefore, a good ranking algorithm in terms of these metrics has to be able to give

up its performance at the bottom of the list if that can improve its performance at the top.

In fact, we will show that DCG and NDCG can indeed be written as a natural

generalization of robust loss functions for binary classification. Based on this observation

we formulate RoBiRank, a novel model for ranking, which maximizes the lower bound of

(N)DCG. Although the non-convexity seems unavoidable for the bound to be tight [Chapelle

et al., 2008], our bound is based on the class of robust loss functions that are found to

be empirically easier to optimize [Ding, 2013]. Indeed, our experimental results suggest

that RoBiRank reliably converges to a solution that is competitive as compared to other

representative algorithms even though its objective function is non-convex.

While standard deterministic optimization algorithms such as L-BFGS [Nocedal

and Wright, 2006] can be used to estimate parameters of RoBiRank, to apply the model to

large-scale datasets a more efficient parameter estimation algorithm is necessary. This is of

particular interest in the context of latent collaborative retrieval [Weston et al., 2012]; unlike

standard ranking task, here the number of items to rank is very large and explicit feature

vectors and scores are not given.

Therefore, we develop an efficient parallel stochastic optimization algorithm for

this problem. It has two very attractive characteristics: First, the time complexity of each

stochastic update is independent of the size of the dataset. Also, when the algorithm is

distributed across multiple number of machines, no interaction between machines is required
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during most part of the execution; therefore, the algorithm enjoys near linear scaling. This is

a significant advantage over serial algorithms, since it is very easy to deploy a large number

of machines nowadays thanks to the popularity of cloud computing services, e.g. Amazon

Web Services.

We apply our algorithm to latent collaborative retrieval task on Million Song Dataset

[Bertin-Mahieux et al., 2011] which consists of 1,129,318 users, 386,133 songs, and 49,824,519

records; for this task, a ranking algorithm has to optimize an objective function that consists

of 386, 133×49, 824, 519 number of pairwise interactions. With the same amount of wall-clock

time given to each algorithm, RoBiRank leverages parallel computing to outperform the

state-of-the-art with a 100% lift on the evaluation metric.

2.2 Robust Binary Classification

Suppose we are given training data which consists of n data points (x1, y1), (x2, y2), . . . , (xn, yn),

where each xi ∈ Rd is a d-dimensional feature vector and yi ∈ {−1,+1} is a label associated

with it. A linear model attempts to learn a d-dimensional parameter ω, and for a given

feature vector x it predicts label +1 if 〈x, ω〉 ≥ 0 and −1 otherwise. Here 〈·, ·〉 denotes the

Euclidean dot product between two vectors. The quality of ω can be measured by the number

of mistakes it makes: L(ω) :=
∑n

i=1 I(yi · 〈xi, ω〉 < 0). The indicator function I(· < 0) is

called the 0-1 loss function, because it has a value of 1 if the decision rule makes a mistake,

and 0 otherwise. Unfortunately, since the 0-1 loss is a discrete function its minimization

is difficult [Feldman et al., 2012]. The most popular solution to this problem in machine

learning is to upper bound the 0-1 loss by an easy to optimize function [Bartlett et al., 2006].
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Figure 2.1: Left: Convex Upper Bounds for 0-1 Loss. Middle: Transformation functions for

constructing robust losses. Right: Logistic loss and its transformed robust variants.

For example, logistic regression uses the logistic loss function σ0(t) := log2(1 + 2−t), to come

up with a continuous and convex objective function

L(ω) :=
n∑
i=1

σ0(yi · 〈xi, ω〉), (2.1)

which upper bounds L(ω). It is clear that for each i, σ0(yi · 〈xi, ω〉) is a convex function in

ω; therefore, L(ω), a sum of convex functions, is also a convex function which is relatively

easier to optimize [Boyd and Vandenberghe, 2004]. Support Vector Machines (SVMs) on the

other hand can be recovered by using the hinge loss to upper bound the 0-1 loss. Figure 2.1

(left) graphically illustrates three loss functions discussed here.

However, convex upper bounds such as L(ω) are known to be sensitive to outliers
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[Long and Servedio, 2010]. The basic intuition here is that when yi · 〈xi, ω〉 is a very large

negative number for some data point i, σ(yi · 〈xi, ω〉) is also very large, and therefore the

optimal solution of (2.1) will try to decrease the loss on such outliers at the expense of its

performance on “normal” data points.

In order to construct robust loss functions, consider the following two transformation

functions:

ρ1(t) := log2(t+ 1), ρ2(t) := 1− 1

log2(t+ 2)
, (2.2)

which, in turn, can be used to define the following loss functions:

σ1(t) := ρ1(σ0(t)), σ2(t) := ρ2(σ0(t)). (2.3)

One can see that σ1(t) → ∞ as t → −∞, but at a much slower rate than σ0(t) does; its

derivative σ′1(t) → 0 as t → −∞. Therefore, σ1(·) does not grow as rapidly as σ0(t) on

hard-to-classify data points. Such loss functions are called Type-I robust loss functions by

Ding [2013], who also showed that they enjoy statistical robustness properties. σ2(t) behaves

even better: σ2(t) converges to a constant as t→ −∞, and therefore “gives up” on hard to

classify data points. Such loss functions are called Type-II loss functions, and they also enjoy

statistical robustness properties [Ding, 2013].

In terms of computation, of course, σ1(·) and σ2(·) are not convex, and therefore

the objective function based on such loss functions is more difficult to optimize. However,

it has been observed in Ding [2013] that models based on optimization of Type-I functions

are often empirically much more successful than those which optimize Type-II functions.

Furthermore, the solutions of Type-I optimization are more stable to the choice of parameter
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initialization. Intuitively, this is because Type-II functions asymptote to a constant, reducing

the gradient to almost zero in a large fraction of the parameter space; therefore, it is difficult

for a gradient-based algorithm to determine which direction to pursue. See Ding [2013] for

more details.

2.2.1 Ranking Model via Robust Binary Classification (RoBiRank)

In this section, we will extend robust binary classification to formulate RoBiRank,

a novel model for ranking.

Let X = {x1, x2, . . . , xn} be a set of contexts, and Y = {y1, y2, . . . , ym} be a set of

items to be ranked. For example, in movie recommender systems X is the set of users and

Y is the set of movies. In some problem settings, only a subset of Y is relevant to a given

context x ∈ X ; e.g. in document retrieval systems, only a subset of documents is relevant to

a query. Therefore, we define Yx ⊂ Y to be a set of items relevant to context x. Observed

data can be described by a set W := {Wxy}x∈X ,y∈Yx where Wxy is a real-valued score given

to item y in context x.

We adopt a standard problem setting used in the literature of learning to rank. For

each context x and an item y ∈ Yx, we aim to learn a scoring function f(x, y) : X × Yx → R

that induces a ranking on the item set Yx; the higher the score, the more important the

associated item is in the given context. To learn such a function, we first extract joint

features of x and y, which will be denoted by φ(x, y). Then, we parametrize f(·, ·) using a

parameter ω, which yields the linear model fω(x, y) := 〈φ(x, y), ω〉, where, as before, 〈·, ·〉

denotes the Euclidean dot product between two vectors. ω induces a ranking on the set of

items Yx; we define rankω(x, y) to be the rank of item y in a given context x induced by ω.
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Observe that rankω(x, y) can also be written as a sum of 0-1 loss functions (see e.g. Usunier

et al. [2009]):

rankω(x, y) =
∑

y′∈Yx,y′ 6=y
I
(
fω(x, y)− fω(x, y′) < 0

)
. (2.4)

2.2.2 Basic LTR Model

If an item y is very relevant in context x, a good parameter ω should position y at

the top of the list; in other words, rankω(x, y) has to be small, which motivates the following

objective function [Buffoni et al., 2011]:

L(ω) :=
∑
x∈X

cx
∑
y∈Yx

v(Wxy) · rankω(x, y), (2.5)

where cx is an weighting factor for each context x, and v(·) : R+ → R+ quantifies the

relevance level of y on x. Note that {cx} and v(Wxy) can be chosen to reflect the metric

the model is going to be evaluated on (this will be discussed in Section 2.2.3). Note that

(2.5) can be rewritten using (2.4) as a sum of indicator functions. Following the strategy in

Section 2.2, one can form an upper bound of (2.5) by bounding each 0-1 loss function by a

logistic loss function:

L(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
∑

y′∈Yx,y′ 6=y
σ0

(
fω(x, y)− fω(x, y′)

)
. (2.6)

Just like (2.1), (2.6) is convex in ω and hence easy to minimize.

2.2.3 DCG

Although (2.6) enjoys convexity, it may not be a good objective function for ranking.

This is because in most applications of learning to rank, it is more important to do well
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at the top of the list than at the bottom, as users typically pay attention only to the top

few items. Therefore, it is desirable to give up performance on the lower part of the list in

order to gain quality at the top. This intuition is similar to that of robust classification in

Section ??; a stronger connection will be shown below.

Discounted Cumulative Gain (DCG) [Manning et al., 2008] is one of the most

popular metrics for ranking. For each context x ∈ X , it is defined as:

DCG(ω) := cx
∑
y∈Yx

v (Wxy)

log2 (rankω(x, y) + 2)
, (2.7)

where v(t) = 2t − 1 and cx = 1. Since 1/ log(t+ 2) decreases quickly and then asymptotes to

a constant as t increases, this metric emphasizes the quality of the ranking at the top of the

list. Normalized DCG (NDCG) simply normalizes the metric to bound it between 0 and 1

by calculating the maximum achievable DCG value mx and dividing by it [Manning et al.,

2008].

2.2.4 RoBiRank formulation

Now we formulate RoBiRank, which optimizes the lower bound of metrics for

ranking in form (2.7). Observe that maxω DCG(ω) can be rewritten as

min
ω

∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
{

1− 1

log2 (rankω(x, y) + 2)

}
. (2.8)

Using (2.4) and the definition of the transformation function ρ2(·) in (2.2), we can rewrite

the objective function in (2.8) as:

L2(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) · ρ2

 ∑
y′∈Yx,y′ 6=y

I
(
fω(x, y)− fω(x, y′) < 0

) . (2.9)
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Since ρ2(·) is a monotonically increasing function, we can bound (2.9) with a

continuous function by bounding each indicator function using the logistic loss:

L2(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) · ρ2

 ∑
y′∈Yx,y′ 6=y

σ0

(
fω(x, y)− fω(x, y′)

) . (2.10)

This is reminiscent of the basic model in (2.6); as we applied the transformation ρ2(·) on

the logistic loss σ0(·) to construct the robust loss σ2(·) in (2.3), we are again applying the

same transformation on (2.6) to construct a loss function that respects the DCG metric used

in ranking. In fact, (2.10) can be seen as a generalization of robust binary classification by

applying the transformation on a group of logistic losses instead of a single loss. In both

robust classification and ranking, the transformation ρ2(·) enables models to give up on part

of the problem to achieve better overall performance.

As we discussed in Section ??, however, transformation of logistic loss using ρ2(·)

results in Type-II loss function, which is very difficult to optimize. Hence, instead of ρ2(·)

we use an alternative transformation ρ1(·), which generates Type-I loss function, to define

the objective function of RoBiRank:

L1(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) · ρ1

 ∑
y′∈Yx,y′ 6=y

σ0

(
fω(x, y)− fω(x, y′)

) . (2.11)

Since ρ1(t) ≥ ρ2(t) for every t > 0, we have L1(ω) ≥ L2(ω) ≥ L2(ω) for every ω. Note that

L1(ω) is continuous and twice differentiable. Therefore, standard gradient-based optimization

techniques can be applied to minimize it. As is standard, a regularizer on ω can be added to

avoid overfitting; for simplicity, we use the `2-norm in our experiments.
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2.2.5 Standard Learning to Rank Experiments

We conducted experiments to check the performance of RoBiRank (2.11) in a

standard learning to rank setting, with a small number of labels to rank. We pitch RoBiRank

against the following algorithms: RankSVM [Lee and Lin, 2013], the ranking algorithm of

Le and Smola [2007] (called LSRank in the sequel), InfNormPush [Rudin, 2009], IRPush

[Agarwal, 2011], and 8 standard ranking algorithms implemented in RankLib1 namely MART,

RankNet, RankBoost, AdaRank, CoordAscent, LambdaMART, ListNet and RandomForests.

We use three sources of datasets: LETOR 3.0 [Chapelle and Chang, 2011] , LETOR

4.02 and YAHOO LTRC [Qin et al., 2010], which are standard benchmarks for ranking (see

Table C.1 for summary statistics). Each dataset consists of five folds; we consider the first

fold, and use the training, validation, and test splits provided. We train with different values

of regularization parameter, and select one with the best NDCG on the validation dataset.

The performance of the model with this parameter on the test dataset is reported. For a

fair comparison, every algorithm follows exactly the same protocol and uses the same split

of data. All experiments in this section are conducted on a computing cluster where each

node has two 2.1 GHz 12-core AMD 6172 processors with 48 GB physical memory per node.

We used implementation of the L-BFGS algorithm provided by the Toolkit for Advanced

Optimization (TAO)3 for estimating the parameter of RoBiRank. For the other algorithms,

we either implemented them using our framework or used the implementations provided by

the authors.

We use values of NDCG at different levels of truncation as our evaluation metric
1http://sourceforge.net/p/lemur/wiki/RankLib
2http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx
3http://www.mcs.anl.gov/research/projects/tao/index.html
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Figure 2.2: Comparison of RoBiRank with a number of competing algorithms.

[Manning et al., 2008]; see Figure 2.2. RoBiRank outperforms its competitors on most of the

datasets; due to space constraints, we only present plots for the TD 2004 dataset here and

other plots can be found in Appendix C. The performance of RankSVM seems insensitive to

the level of truncation for NDCG. On the other hand, RoBiRank, which uses non-convex loss

function to concentrate its performance at the top of the ranked list, performs much better

especially at low truncation levels. It is also interesting to note that the NDCG@k curve

of LSRank is similar to that of RoBiRank, but RoBiRank consistently outperforms at each

level. RoBiRank dominates Inf-Push and IR-Push at all levels. When compared to standard

algorithms, Figure 2.2 (right), again RoBiRank outperforms especially at the top of the list.

Overall, RoBiRank outperforms IRPush and InfNormPush on all datasets except

TD 2003 and OHSUMED where IRPush seems to fare better at the top of the list. Compared

to the 8 standard algorithms, again RobiRank either outperforms or performs comparably

to the best algorithm except on two datasets (TD 2003 and HP 2003), where MART and

Random Forests overtake RobiRank at few values of NDCG. We present a summary of the

NDCG values obtained by each algorithm in Table C.1 in the appendix. On the MSLR30K
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dataset, some of the additional algorithms like InfNormPush and IRPush did not complete

within the time period available; indicated by dashes in the table.

In the MSLR dataset (Figure C.1 in Appendix C), despite the large number of

queries and instances, RoBiRank still manages to outperform its competitors and it follows

a trend as expected; having a higher NDCG@1 score, which provides an evidence that it

focusses on the most important documents.

2.3 Latent Collaborative Retrieval (LCR)

2.3.1 Basic LCR model

For each context x and an item y ∈ Y , the standard problem setting of learning to

rank requires training data to contain feature vector φ(x, y) and score Wxy assigned on the

x, y pair. When the number of contexts |X | or the number of items |Y| is large, it might be

difficult to define φ(x, y) and measure Wxy for all x, y pairs. Therefore, in most learning to

rank problems we define the set of relevant items Yx ⊂ Y to be much smaller than Y for

each context x, and then collect data only for Yx. Nonetheless, this may not be realistic in

all situations; in a movie recommender system, for example, for each user every movie is

somewhat relevant.

On the other hand, implicit user feedback data is much more abundant. For example,

a lot of users on Netflix would simply watch movie streams on the system but do not leave

an explicit rating. By the action of watching a movie, however, they implicitly express their

preference. Such data consist only of positive feedback, unlike traditional learning to rank

datasets which have score Wxy between each context-item pair x, y. Again, we may not be
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able to extract feature vectors for each x, y pair.

In such a situation, we can attempt to learn the score function f(x, y) without a

feature vector φ(x, y) by embedding each context and item in an Euclidean latent space;

specifically, we redefine the score function to be: f(x, y) := 〈Ux, Vy〉, where Ux ∈ Rd is the

embedding of the context x and Vy ∈ Rd is that of the item y. Then, we can learn these

embeddings by a ranking model. This approach was introduced in Weston et al. [2012], and

was called latent collaborative retrieval.

Adapting RoBiRank for Latent Collaborative Retrieval

In this section, we show how RoBiRank can be specialized for Latent Collaborative

Retrieval. Let us define Ω to be the set of context-item pairs (x, y) which was observed in the

dataset. Let v(Wxy) = 1 if (x, y) ∈ Ω, and 0 otherwise; this is a natural choice since the score

information is not available. For simplicity, we set cx = 1 for every x. Now RoBiRank (2.11)

specializes to:

L1(U, V ) =
∑

(x,y)∈Ω

ρ1

∑
y′ 6=y

σ0(f(Ux, Vy)− f(Ux, Vy′))

 . (2.12)

Note that now the summation inside the parenthesis of (2.12) is over all items Y instead

of a smaller set Yx, therefore we omit specifying the range of y′ from now on. To avoid

overfitting, a regularizer is added to (2.12); for simplicity we use the Frobenius norm of U

and V in our experiments.
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2.3.2 Stochastic Optimization

When the size of the data |Ω| or the number of items |Y| is large, however, methods

that require exact evaluation of the function value and its gradient will become very slow

since the evaluation takes O (|Ω| · |Y|) computation. In this case, stochastic optimization

methods are desirable [Bottou and Bousquet, 2011]; in this subsection, we will develop a

stochastic gradient descent algorithm whose complexity is independent of |Ω| and |Y|.

For simplicity, let θ be a concatenation of all parameters {Ux}x∈X , {Vy}y∈Y . The

gradient ∇θL1(U, V ) of (2.12) is

∑
(x,y)∈Ω

∇θρ1

∑
y′ 6=y

σ0(f(Ux, Vy)− f(Ux, Vy′))

 .

Finding an unbiased estimator of the gradient whose computation is independent of |Ω| is

not difficult; if we sample a pair (x, y) uniformly from Ω, then it is easy to see that the

following estimator

|Ω| · ∇θρ1

∑
y′ 6=y

σ0(f(Ux, Vy)− f(Ux, Vy′))

 (2.13)

is unbiased. This still involves a summation over Y , however, so it requires O(|Y|) calculation.

Since ρ1(·) is a nonlinear function it seems unlikely that an unbiased stochastic gradient

which randomizes over Y can be found; nonetheless, to achieve convergence guarantees of the

stochastic gradient descent algorithm, unbiasedness of the estimator is necessary [Nemirovski

et al., 2009].

We attack this problem by linearizing the objective function by parameter expansion.

Note the following property of ρ1(·) [Bouchard, 2007]:

ρ1(t) = log2(t+ 1) ≤ − log2 ξ +
ξ · (t+ 1)− 1

log 2
. (2.14)
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This holds for any ξ > 0, and the bound is tight when ξ = 1
t+1 . Now introducing an auxiliary

parameter ξxy for each (x, y) ∈ Ω and applying this bound, we obtain an upper bound of

(2.12) as

L(U, V, ξ) :=
∑

(x,y)∈Ω

− log2 ξxy +
ξxy

(∑
y′ 6=y σ0(f(Ux, Vy)− f(Ux, Vy′)) + 1

)
− 1

log 2
. (2.15)

Now we propose an iterative algorithm in which, each iteration consists of (U, V )-step and

ξ-step; in the (U, V )-step we minimize (2.15) in (U, V ) and in the ξ-step we minimize in ξ.

Pseudo-code can be found in Algorithm 1.

(U, V )-step The partial derivative of (2.15) in terms of U and V can be calculated as:

∇U,V L(U, V, ξ) := 1
log 2

∑
(x,y)∈Ω ξxy

(∑
y′ 6=y∇U,V σ0(f(Ux, Vy)− f(Ux, Vy′))

)
. Now it is easy

to see that the following stochastic procedure unbiasedly estimates the above gradient:

• Sample (x, y) uniformly from Ω

• Sample y′ uniformly from Y \ {y}

• Estimate the gradient by

|Ω| · (|Y| − 1) · ξxy
log 2

· ∇U,V σ0(f(Ux, Vy)− f(Ux, Vy′)). (2.16)

Therefore a stochastic gradient descent algorithm based on (2.16) will converge to a local

minimum of the objective function (2.15) with probability one [Robbins and Monro, 1951].

Note that the time complexity of calculating (2.16) is independent of |Ω| and |Y|. Also, it is

a function of only Ux and Vy; the gradient is zero in terms of other variables.

ξ-step When U and V are fixed, minimization of ξxy variable is independent of each other

and a simple analytic solution exists: ξxy = 1∑
y′ 6=y σ0(f(Ux,Vy)−f(Ux,Vy′ ))+1 . This of course
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requires O(|Y|) work. In principle, we can avoid summation over Y by taking stochastic

gradient in terms of ξxy as we did for U and V . However, since the exact solution is simple

to compute and also because most of the computation time is spent on (U, V )-step, we found

this update rule to be efficient.

Algorithm 1 Serial parameter estimation algorithm for latent collaborative retrieval
1: η: step size

2: repeat

3: // (U, V )-step

4: repeat

5: Sample (x, y) uniformly from Ω

6: Sample y′ uniformly from Y \ {y}

7: Ux ← Ux − η · ξxy · ∇Uxσ0(f(Ux, Vy)− f(Ux, Vy′))

8: Vy ← Vy − η · ξxy · ∇Vyσ0(f(Ux, Vy)− f(Ux, Vy′))

9: until convergence in U, V

10: // ξ-step

11: for (x, y) ∈ Ω do

12: ξxy ← 1∑
y′ 6=y σ0(f(Ux,Vy)−f(Ux,Vy′ ))+1

13: end for

14: until convergence in U, V and ξ

2.3.3 Parallelization

The linearization trick in (2.15) not only enables us to construct an efficient

stochastic gradient algorithm, but also makes possible to efficiently parallelize the algorithm
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across multiple number of machines.

Suppose there are p number of machines. The set of contexts X is randomly

partitioned into mutually exclusive and exhaustive subsets X (1),X (2), . . . ,X (p) which are

of approximately the same size. This partitioning is fixed and does not change over time.

The partition on X induces partitions on other variables as follows: U (q) := {Ux}x∈X (q) ,

Ω(q) :=
{

(x, y) ∈ Ω : x ∈ X (q)
}
, ξ(q) := {ξxy}(x,y)∈Ω(q) , for 1 ≤ q ≤ p.

Each machine q stores variables U (q), ξ(q) and Ω(q). Since the partition on X is

fixed, these variables are local to each machine and are not communicated. Now we describe

how to parallelize each step of the algorithm: the pseudo-code can be found in Algorithm 2.

(U, V )-step At the start of each (U, V )-step, a new partition on Y is sampled to divide Y

into Y(1),Y(2), . . . ,Y(p) which are also mutually exclusive, exhaustive and of approximately

the same size. The difference here is that unlike the partition on X , a new partition on Y

is sampled for every (U, V )-step. Let us define V (q) := {Vy}y∈Y(q) . After the partition on

Y is sampled, each machine q fetches Vy’s in V (q) from where it was previously stored; in

the very first iteration which no previous information exists, each machine generates and

initializes these parameters instead. Now let us define L(q)(U (q), V (q), ξ(q)) :=

∑
(x,y)∈Ω(q),y∈Y(q)

− log2 ξxy +
ξxy

(∑
y′∈Y(q),y′ 6=y σ0(f(Ux, Vy)− f(Ux, Vy′)) + 1

)
− 1

log 2
.

In parallel setting, each machine q runs stochastic gradient descent on L(q)(U (q), V (q), ξ(q))

instead of the original function L(U, V, ξ). Since there is no overlap between machines on the

parameters they update and the data they access, every machine can progress independently

of each other. Although the algorithm takes only a fraction of data into consideration at
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a time, this procedure is also guaranteed to converge to a local optimum of the original

function L(U, V, ξ) according to Stratified Stochastic Gradient Descent (SSGD) scheme of

Gemulla et al. [2011]. The intuition is as follows: if we take expectation over the random

partition on Y, we have ∇U,V L(U, V, ξ) =

q2 · E

 ∑
1≤q≤p

∇U,V L(q)(U (q), V (q), ξ(q))

 , (2.17)

while the expectation is over the selection of the partition
{
Y(1),Y(2), . . . ,Y(p)

}
. Therefore,

although there is some discrepancy between the function we take stochastic gradient on and

the function we actually aim to minimize, in the long run the bias will be washed out and the

algorithm will converge to a local optimum of the objective function L(U, V, ξ). Specifically,

(2.17) ensures that Condition 7 of Theorem 1 in Gemulla et al. [2011] is satisfied, while the

rest of conditions can be easily met by introducing an L2 regularizer and thus bounding the

parameter space.

The convergence can be formally proved as follows. We introduce a simplifying

assumption that for each inner repeat loop in Algorithm 2, each machine executes exactly

the same number of updates, which we will denote by T . Let (x(q),t, y(q),t) be the t-th pair

sampled in machine q. Since updates in in each machine are independent of updates made in

other machines, we can regard that every machine is simultaneously executing (reading or

writing) updates. In other words, each machine p samples an unbiased stochastic gradient

for L(q)(U (q), V (q), ξ(q)).

ξ-step In this step, all machines synchronize to retrieve every entry of V . Then, each

machine can update ξ(q) independently of each other. When the size of V is very large
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and cannot be fit into the main memory of a single machine, V can be partitioned as in

(U, V )-step and updates can be calculated in a round-robin way.

Note that this parallelization scheme requires each machine to allocate only 1
p -

fraction of memory that would be required for a single-machine execution. Therefore, in

terms of space complexity the algorithm scales linearly with the number of machines.

2.3.4 Experiments

In this subsection, we ask the following question: Given large amounts of computa-

tional resources, what is the best latent collaborative retrieval model (in terms of predictive

performance on the test dataset) that one can produce within a given wall-clock time?

Towards this end, we work with the parallel variant of RoBiRank described in Section 2.3.3.

As a representative dataset we use the Million Song Dataset (MSD) Bertin-Mahieux et al.

[2011], which consists of 1,129,318 users (|X |), 386,133 songs (|Y|), and 49,824,519 records

(|Ω|) of a user x playing a song y in the training dataset. The objective is to predict the

songs from the test dataset that a user is going to listen to4.

Squared frobenius norm of matrices U and V were added to the objective function

(2.11) for regularization, and the entries of U and V were independently sampled uniformly

from 0 to 1/
√
d. We performed a grid-search to find the best step size parameter. Since

explicit ratings are not given, NDCG is not applicable for this task; we use precision at 1

and 10 [Manning et al., 2008] as our evaluation metric.
4the original data also provides the number of times a song was played by a user, but we ignored this in

our experiment.
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Hardware: This experiment was run on a computing cluster where each machine is

equipped with 2 Intel Xeon E5 processors (16 cores) and 32GB of RAM. Our algorithm is

implemented in C++ and uses Intel Thread Building Blocks (TBB) to handle thread-level

parallelization, and MVAPICH2 was used for machine-to-machine communication. Due to a

limitation of the job scheduler on the cluster all experiments had to be stopped after 100,000

seconds.

Predictive Performance

We compare RoBiRank with a state of the art algorithm from Weston et al. [2012], which

optimizes a similar objective function (2.18). We compare how fast the quality of the solution

improves as a function of wall clock time. Since the authors of Weston et al. [2012] do not

make available their code, we implemented their algorithm within our framework using the

same data structures and libraries used by our method. Furthermore, for a fair comparison,

we used the same initialization for U and V and performed an identical grid-search over the

step size parameter.

It can be seen from Figure 2.3 that on a single machine the algorithm of Weston

et al. [2012] is very competitive and outperforms RoBiRank. The reason for this might be

the introduction of the additional ξ variables in RoBiRank, which slows down convergence.

However, RoBiRank training can be distributed across processors, while it is not clear how

to parallelize the algorithm of Weston et al. [2012]. Consequently, RoBiRank 32 which uses

32 machines for its computation can produce a significantly better model within the same

wall clock time window.
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Figure 2.3: Comparison of RoBiRank and Weston et al. [2012] in terms of Mean Precision

@1 (left) and Mean Precision@10 (right) when the same amount of wall-clock computation

time is given.

Scalability

Next, we study the scaling behavior of RoBiRank as a function of number of machines.

RoBiRank p denotes the parallel version of RoBiRank which is distributed across p machines.

In Figure 2.4 we plot mean Precision@1 as a function of the number of machines × the

number of seconds elapsed; this is a proxy for CPU time. If an algorithm linearly scales

across multiple processors, then all lines in the figure should overlap with each other. As can

be seen RoBiRank exhibits near ideal speed up when going from 4 to 32 machines5.

2.4 Related Work

In terms of modeling, viewing ranking problems as generalization of binary classifi-

cation problems is not a new idea; for example, RankSVM defines the objective function as a

sum of hinge losses, similarly to our basic model (2.5) in Section 2.2.2. However, it does not

directly optimize the ranking metric such as NDCG; the objective function and the metric
5The graph for RoBiRank 1 is hard to see because it was run for only 100,000 CPU-seconds.
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Figure 2.4: Scaling behavior of RoBiRank as the number of machines changes. Since the

x-axis is now scaled by the number of machines, when we achieve linear scaling the curves

should overlap with each other.

are not immediately related to each other. In this respect, our approach is closer to that of Le

and Smola [2007] which constructs a convex upper bound on the ranking metric and Chapelle

et al. [2008] which improves the bound by introducing non-convexity. The objective function

of Chapelle et al. [2008] is also motivated by ramp loss, which is used for robust classification;

nonetheless, to our knowledge the direct connection between the ranking metrics in form

(2.7) (DCG, NDCG) and the robust loss (2.3) is our novel contribution. Also, our objective

function is designed to specifically bound the ranking metric, while Chapelle et al. [2008]

proposes a general recipe to improve existing convex bounds.

Stochastic optimization of the objective function for latent collaborative retrieval

has been also explored in Weston et al. [2012]. They attempt to minimize

∑
(x,y)∈Ω

Φ

1 +
∑
y′ 6=y

I(f(Ux, Vy)− f(Ux, Vy′) < 0)

 , (2.18)

where Φ(t) =
∑t

k=1
1
k . This is similar to our objective function (2.15); Φ(·) and ρ2(·) are

asymptotically equivalent. However, we argue that our formulation (2.15) has two major
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advantages. First, it is a continuous and differentiable function, therefore gradient-based

algorithms such as L-BFGS and stochastic gradient descent have convergence guarantees.

On the other hand, the objective function of Weston et al. [2012] is not even continuous,

since their formulation is based on a function Φ(·) that is defined for only natural numbers.

Also, through the linearization trick in (2.15) we are able to obtain an unbiased stochastic

gradient, which is necessary for the convergence guarantee, and to parallelize the algorithm

across multiple machines as discussed in Section 2.3.3. It is unclear how these techniques

can be adapted for the objective function of Weston et al. [2012].

Note that Weston et al. [2012] proposes a more general class of models for the

task than can be expressed by (2.18). For example, they discuss situations in which we

have side information on each context or item to help learning latent embeddings. Some of

the optimization techniqures introduced in Section 2.3.2 can be adapted for these general

problems as well, but is left for future work.

Parallelization of an optimization algorithm via parameter expansion (2.14) was

applied to a bit different problem named multinomial logistic regression [Gopal and Yang,

2013]. However, to our knowledge we are the first to use the trick to construct an unbiased

stochastic gradient that can be efficiently computed, and adapt it to stratified stochastic

gradient descent (SSGD) scheme of Gemulla et al. [2011]. Note that the optimization

algorithm can alternatively be derived using convex multiplicative programming framework

of Kuno et al. [1993]. In fact, Ding [2013] develops a robust classification algorithm based on

this idea; this also indicates that robust classification and ranking are closely related.

It has been observed that while matrix completion approaches are successful in
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predicting ratings of users to items, they have poor performances on predicting items users

might be interested in Cremonesi et al. [2010]. It has been argued that in recommendation

purposes, it is important to model what user-item pair was not observed as well as what was

observed [Cremonesi et al., 2010, Steck, 2010].

2.5 Conclusion

In this chapter, we developed RoBiRank, a novel model on ranking, based on

insights and techniques from robust binary classification. Then, we proposed a scalable and

parallelizable stochastic optimization algorithm that can be applied to latent collaborative

retrieval task which large-scale data without feature vectors and explicit scores have to take

care of. Experimental results on both learning to rank datasets and latent collaborative

retrieval dataset suggest the advantage of our approach.

As a final note, the experiments in Section 2.3.4 are arguably unfair towards

WSABIE. For instance, one could envisage using clever engineering tricks to derive a parallel

variant of WSABIE (e.g., by averaging gradients from various machines), which might

outperform RoBiRank on the MSD dataset. While performance on a specific dataset might

be better, we would lose global convergence guarantees. Therefore, rather than obsess over

the performance of a specific algorithm on a specific dataset, via this work we hope to draw

the attention of the community to the need for developing principled parallel algorithms for

this important problem.

38



Algorithm 2 Multi-machine parameter estimation algorithm for latent collaborative retrieval
1: η: step size

2: repeat

3: // parallel (U, V )-step

4: repeat

5: Sample a partition
{
Y(1),Y(2), . . . ,Y(p)

}
for all machine q ∈ {1, 2, . . . , p} do in

parallel

6: Fetch all Vy ∈ V (q)

7: repeat

8: Sample (x, y) uniformly from
{

(x, y) ∈ Ω(q), y ∈ Y(q)
}

9: Sample y′ uniformly from Y(q) \ {y}

10: Ux ← Ux − η · ξxy · ∇Uxσ0(f(Ux, Vy)− f(Ux, Vy′))

11: Vy ← Vy − η · ξxy · ∇Vyσ0(f(Ux, Vy)− f(Ux, Vy′))

12: until predefined time limit is exceeded

13: end for

14: until convergence in U, V

15: // parallel ξ-step

for all machine q ∈ {1, 2, . . . , p} do in parallel

16: Fetch all Vy ∈ V

17: for (x, y) ∈ Ω(q) do

18: ξxy ← 1∑
y′ 6=y σ0(f(Ux,Vy)−f(Ux,Vy′ ))+1

19: end for

20: end for

21: until convergence in U, V and ξ
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Chapter 3

Multinomial Logistic Regression

3.1 Introduction

In this chapter, we focus on multinomial logistic regression (MLR), also known

as softmax regression which computes the probability of a D-dimensional data point xi ∈

{x1,x2, . . . ,xN} belonging to a class k ∈ {1, 2, . . . ,K}. The model is parameterized by a

parameter matrixW ∈ RD×K . MLR is a method of choice for several real-world tasks such as

Image Classification [Russakovsky et al., 2015] and Video Recommendation [Davidson et al.,

2010]. It also manifests as the final output layer in Feed-Forward Deep Neural Networks

[Goodfellow et al., 2016]. Therefore, it has received significant research attention [Gopal and

Yang, 2013], [Yen et al., 2016]. We concern ourselves with running MLR in the presence of

large number of data points N and large number of classes K, a setting which often requires

distributing computation over P machines (viz. workers).

Traditional methods to perform distributed MLR typically fall into two categories:

(a) data parallel methods such as L-BFGS [Nocedal and Wright, 2006] which partition the
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data workload across P workers, however, duplicate the model workload across all workers,

and (b) model parallel methods such as LC Gopal and Yang [2013], which partition the

model workload across P workers, but need to duplicate the data across all of them. This is

illustrated in Table 3.1.

Storage per worker Communication

Data Parameters

L-BFGS O(NDP ) O(KD) O(KD)

LC O(ND) O(KDP ) +O(N) O(N)

DS-MLR O(NDP ) O(KDP ) +O(NP ) O(KDP )

Table 3.1: Memory requirements of various algorithms in MLR (N : number of data points,

D: number of features, K: number of classes, P : number of workers).

The growing acclaim of machine learning is witnessing a surge of novel prediction

tasks in diverse domains such as natural language, speech, image and video. These tasks

not only involve humongous amounts of data, but also are powered by sophisticated models,

thus demanding larger storage footprints for the model itself. Such memory requirements

typically exceed the capacity of a single machine in a commodity cluster easily. Figure 1.2

illustrates this fundamental challenge in large-scale machine learning. As seen in the figure,

real-world datasets exhibit varying storage requirements for the data and model. While the

smaller ones are within the capacity of a single machine, larger datasets such as ODP and

Reddit are impossible to run on a commodity cluster with just traditional model parallelism

approaches. This is because ODP has a massive requirement of 355 GB for the model itself,
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while Reddit-Full dataset is even bigger, requiring 228 GB for the data and 358 GB for its

model.

One versatile method (DS-MLR): We propose a universal method which acts

as a swiss army knife to get the best of both worlds. As a consequence of partitioning both

data and model workloads simultaneously (Hybrid Parallelism) across P processors, DS-MLR

is able to handle data and model parameters of varying sizes, without incurring any storage

costs due to duplication. In Figures 3.4 and 3.6, we show results of running DS-MLR on three

representative datasets which have large model storage requirements: (i) Despite being a

modestly-sized dataset, LSHTC-large requires 34 GB for its model parameters. As a result,

only model-parallel methods such as LC can be run on it. When compared against DS-MLR,

we observed that DS-MLR is able to achieve a much faster convergence than LC as seen in

the plot (ii) ODP is a much larger dataset requiring 355 GB for the model parameters. Even

though LC could theoretically be run on it, we observed that it took an enormous amount of

time to complete even a single iteration. We believe this is because LC is a second-order

method and therefore its per iteration cost is significantly higher than a stochastic method

such as DS-MLR (iii) Finally, Reddit-Full is a new benchmark dataset pushing the limits

of data and model storage. Running MLR on this dataset requires 228 GB of data and 358

GB of model storage. This is a prototypical use-case where a hybrid-parallel method shines

over its vanilla data/model parallel counterparts. To the best of our knowledge no other

existing methods are able to handle such large workloads. Figure 3.6 shows that DS-MLR is

able to handle this scale. However, since each iteration on this massive dataset takes 5 hours

(this is excluding the time spent in data loading and initializing the optimizer), we could not
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keep our experiment running beyond 10 days due to job time limitations on our HPC cluster.

Cost Analysis of using commodity hardware: Massive real-world datasets

demand high memory, e.g. Reddit-Full consumes 600 GB of total memory (228 GB data,

358 GB model parameters). When using hybrid parallelism, one can get away with using

cheap commodity hardware. Since the load for RedditFull dataset demands 50,000 compute

hours per iteration, using 20 c5.4xlarge EC2 instances (32 GB RAM, 16 CPUs, $0.68 /

hr per machine) each running 16 threads, one iteration requires 156 hours with a cost of

$2,121 per iteration. On the other hand, if we use data parallelism only (or model parallelism

only), high-memory instances such as x1.16xlarge (900 GB RAM, 64 CPUs, $6.67 per

hr per machine) are inevitable. A rough calculation shows that to achieve the same per

iteration time, one would have to spend $111,335. This is mainly because, either data or

parameters would need to be replicated across each processor, thus making it impossible to

use all 64 cores. Even if we make use of a clever data or parameter sharing mechanism to

avoid replication, the resulting cost comes down to $5,000 roughly, which is still twice the

earlier case.

Our main contributions:

• Hybrid Parallel reformulation for MLR: We present DS-MLR, a novel distributed

stochastic optimization algorithm that can partition both data as well as model

parameters simultaneously (hybrid parallel) across its workers. DS-MLR is able to

perfectly partition the workload across P workers, costing O(NDP ) storage for data and

O(KDP + N
P ) for the model. As a result, DS-MLR can scale to arbitrarily large datasets

where to the best of our knowledge, many of the existing distributed algorithms cannot
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be applied since they need to either duplicate O(KD) storage (data parallel methods)

or O(ND) storage (model parallel methods) across their workers.

• Asynchronous and De-centralized Implementation: To deploy DS-MLR on real-

world datasets, we develop a non-blocking and asynchronous variant (DS-MLR Async),

which provides further speedups in the multi-core, multi-machine setting by interleaving

the computation and communication phases during every iteration. DS-MLR avoids

expensive bulk-synchronization operations by maintaining local normalization terms on

each worker and accumulating them incrementally using a token-ring topology. DS-

MLR is implemented in C++ making use of intra-machine parallelism (multi-threading

using Intel TBB) as well as inter-machine parallelism (using MPI).

• Large-scale real world experiments: We present an exhaustive empirical study

running DS-MLR on real-world datasets with varying data and model footprints,

showing that DS-MLR readily applies in all cases. In particular, to demonstrate

applicability of DS-MLR to the scenario where both data and model do not fit on a

single machine, we created a new benchmark dataset Reddit-Full that has data and

model footprints of 228 GB and 358 GB respectively.

3.2 Related Work

There has been a flurry of work in the past few years on developing distributed

optimization algorithms for machine learning. In this section, we characterize some of this

related work and put our method DS-MLR in perspective.
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Data Parallelism vs Model Parallelism: The classic paradigm in distributed

machine learning is to perform data partitioning, using, for instance, a map reduce style

architecture [Chu et al., 2007] where data is distributed across multiple slaves. In each

iteration, the slaves gather the parameter vector from the master, compute gradients locally

and transmit them back to the master. The L-BFGS optimization algorithm [Nocedal and

Wright, 2006] is typically used in the master to update the parameters after every iteration.

The main drawback of this strategy is that the model parameters need to be replicated on

every machine. For a D dimensional problem involving K classes, this demands O(K ×D)

storage. In many cases, this is too large to fit on a single machine. An orthogonal approach

is to use model partitioning. Here again, a master slave architecture is used, but now, the

data is replicated across each slave. The model parameters are partitioned and distributed

to each machine. During each iteration, the model parameters on the individual machines

are updated, and some auxiliary variables are computed and distributed to the other slaves,

which use these variables in their parameter updates. See the Log-Concavity (LC) method

Gopal and Yang [2013] for an example of such a strategy. The main drawback of this approach,

however, is that the data needs to be replicated on each machine, and consequently it is not

applicable when the data is too large to fit on a single machine.

Distributed Stochastic Gradient Methods: Stochastic gradient descent based

approaches have proven to be very fruitful since they make frequent parameter updates and

converge much more rapidly [Bottou, 2010]. Several algorithms for parallelizing SGD have

been proposed in the past such as Hogwild [Recht et al., 2011], Parallel SGD [Zinkevich

et al., 2010], DSGD [Gemulla et al., 2011], FPSGD [Zhuang et al., 2013] and more recently,
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Parameter Server [Li et al., 2013] and Petuum [Xing et al., 2015]. Although the importance

of data and model parallelism has been recognized in Parameter Server and the Petuum

framework [Xing et al., 2015], to the best of our knowledge this has not been exploited in

their specific instantiations such as applications to multinomial logistic regression [Xie et al.,

2015]. We believe this is because [Xie et al., 2015] does not reformulate the problem the

way DS-MLR does. Several problems in machine learning are not naturally well-suited for

simultaneous data and model parallelism, and therefore such reformulations are essential in

uncovering a suitable structure.

De-centralized vs Parameter Server Based: Parameter Server [Li et al., 2013]

a widely popular architecture for distributed machine learning, makes use of two types of

nodes: workers and parameter servers. The former is used to store the partitioned data and

the latter to store the partitioned model. Workers communicate with the parameter servers

and push/ pull gradient updates. Therefore, this architecture can be leveraged for hybrid

parallelism (simultaneous data and model parallelism). [Xiao et al., 2017b] is one such work

where parameter servers have been used to provide simultaneous data and model parallel

formulation for binary regularized risk minimization problems. However parameter server

has its own challenges: (1) There is an added overhead in network bandwidth arising due to

communication between the layers of workers and parameter servers, (2) There is some effort

required to strike the right balance between hardware efficiency and statistical efficiency while

setting up the resource allocation (ratio of # of worker nodes to # of parameter servers).

Adding too few parameter servers could cause the model to converge very slowly or not

converge at all (poor statistical efficiency) due to insufficient rounds of synchronization. On
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the other hand, adding too many of these servers to enable frequent model synchronization,

could take hardware resources away from the workers (poor hardware efficiency), (3) Moreover,

the optimal resource allocation of workers and parameter servers depends on several factors

such as the cluster size, hardware characteristics, and the training data. These challenges

have been explored in much more detail in [Watcharapichat et al., 2016] with some empirical

study. The work in [Watcharapichat et al., 2016] provides a motivation towards exploring

de-centralized architectures for distributed machine learning. Our proposed method DS-MLR

is a step in this direction, where at any given point of time, both data as well as model stays

truly partitioned into mutually exclusive blocks across the workers. Parameter updates are

directly exchanged across workers, eliminating the need for any intermediate servers.

Asynchronous vs Synchronous: Parameter Server and HogWild [Recht et al.,

2011] are asynchronous approaches. In Hogwild, parameter updates are executed in parallel

using different threads under the assumption that any two serial updates are not likely to

collide on the same data point when the data is sparse. DS-MLR does not make any such

assumptions. It has both synchronous and asynchronous variants and the latter is in the

spirit of NOMAD [Yun et al., 2013].

Alternating direction method of multipliers (ADMM) [Boyd et al., 2011] is another

popular technique to parallelize convex optimization problems. The key idea in ADMM is to

reformulate the original optimization problem by introducing redundant linear constraints.

This makes the new objective easily data parallel. However, ADMM suffers from a similar

drawback as L-BFGS when applied to multinomial logistic regression. The number of redundant

constraints that need to be introduced are N (# data points) × K (# classes) which is a

47



major bottleneck to model parallelism. Moreover, the convergence rate of ADMM for MLR

is known to be slow as discussed in [Gopal and Yang, 2013].

Log-Concavity (LC) method Gopal and Yang [2013] proposed a distributed model

parallel approach to solve the multinomial logistic regression problem by linearizing the

log-partition function based on its variational form [Bouchard, 2007]. However, because their

formulation is only model parallel - the entire data has to be replicated across all the workers,

and a bulk-synchronization step is required per iteration to accumulate the partial models

from various machines. This is not practical for real world applications when both the data

and model sizes get larger. Interestingly, we noticed that the objective function of the LC

method can also be recovered from the objective function of DS-MLR (3.5).

Doubly-Separable formulations: Our reformulation in DS-MLR exploits the

doubly-separable [Yun, 2014] structure in terms of global model parameters and some local

auxiliary variables. Other doubly-separable methods also exist such as NOMAD [Yun

et al., 2013] for matrix completion and RoBiRank [Yun et al., 2014a] for latent collaborative

retrieval. NOMAD [Yun et al., 2013] is a distributed-memory, asynchronous and decentralized

algorithm and RoBiRank [Yun et al., 2014a] is also a distributed-memory but synchronous

algorithm.

3.3 Multinomial Logistic Regression

Consider training data of the form (xi, yi)i=1,...,N where xi ∈ Rd is a d-dimensional

feature vector and yi ∈ {1, 2, . . . ,K} is a label associated with it; K denotes the number of

class labels. Let yik = I(yi = k) denote the membership of data point xi to class k. The
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probability that xi belongs to class k is given by:

p(y = k|xi) =
exp(wT

k xi)∑K
j=1 exp(wT

j xi)
, (3.1)

where W = {w1,w2, . . . ,wK} denotes the parameter vector for each of the K classes. Using

the negative log-likelihood of (3.1) as a loss function, the L2-regularized objective function

of MLR can be written as:

L1(W ) =
λ

2

K∑
k=1

‖wk‖2 −
1

N

N∑
i=1

K∑
k=1

yikw
T
k xi +

1

N

N∑
i=1

log

(
K∑
k=1

exp(wT
k xi)

)
, (3.2)

where λ is the regularization hyper-parameter. Table 5.1 summarizes these notations.

Optimizing the above objective function (3.2) when the number of classes K is large, is

extremely challenging as computing the log partition function involves summing up over

a large number of classes. In addition, it couples the class level parameters wk together,

making it difficult to distribute computation. In this section, we present an alternative

formulation for MLR, to address this challenge.

3.4 Doubly-Separable Multinomial Logistic Regression (DS-

MLR)

In this section, we present a reformulation of the MLR problem, which is closer in

spirit to dual-decomposition methods [Boyd and Vandenberghe, 2004]. We begin by first

rewriting (3.2) as,

L1(W ) =
λ

2

K∑
k=1

‖wk‖2 −
1

N

N∑
i=1

K∑
k=1

yikw
T
k xi −

1

N

N∑
i=1

log
1∑K

k=1 exp(wT
k xi)

, (3.3)
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Symbol Definition

N total number of observations

D total number of dimensions

K total number of classes

x = {x1, . . . ,xN}, xi ∈ RD data points

y = {y1, . . . , yN}, yi ∈ {1, 2, . . . ,K} class the data point xi belongs to (i.e. label)

W = {w1, . . . ,wK}, wk ∈ RD parameters of the model

a = {a1, . . . , aN}, ai ∈ R auxiliary variables mapping one-one to the observations

b = {b1, . . . , bN}, bi ∈ R auxiliary variables used to represent log ai for convenience

yik = I (yi = k) Indicator variable denoting the membership of data point xi to class k

λ regularization hyper-parameter

η learning rate hyper-parameter

Table 3.2: Notations for Multinomial Logistic Regression

This can be expressed as a constrained optimization problem,

L1(W,A) =
λ

2

K∑
k=1

‖wk‖2 −
1

N

N∑
i=1

K∑
k=1

yikw
T
k xi −

1

N

N∑
i=1

log ai, (3.4)

s.t. ai =
1∑K

k=1 exp(wT
k xi)

, i = 1, 2, . . . N

where A = {ai}i=1,...,N .

Observe that this resembles dual-decomposition methods of the form:

minx,z f(x) + g(z) s.t. Ax+Bz = c, where f and g are convex functions. In our objective

function (3.4), the decomposable functions are f(W ) and g(A) respectively. Introducing

Lagrange multipliers, βi, i = 1, 2 . . . N , we obtain the equivalent unconstrained minimax
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problem [Boyd and Vandenberghe, 2004],

L2(W,A, β) =
λ

2

K∑
k=1

‖wk‖2 −
1

N

N∑
i=1

K∑
k=1

yikw
T
k xi −

1

N

N∑
i=1

log ai (3.5)

+
1

N

N∑
i=1

K∑
k=1

βi ai exp(wT
k xi)−

1

N

N∑
i=1

βi

It is known that dual-decomposition methods can reliably find a stationary point, therefore

the solution obtained by our method is also globally optimal. The updates for the primal

variables W , A and dual variable β can be written as follows:

W t+1
k ← argmin

Wk

L2(Wk, a
t, βt), (3.6)

at+1
i ← argmin

ai
L2(W t+1

k , ati, β
t
i), (3.7)

βt+1
i ← βti + ρ

(
at+1
i

K∑
k=1

exp
(
wTk

t+1
xi

)
− 1

)
(3.8)

Here, W t+1
k and at+1

i can be obtained by any black-box optimization procedure, while βt+1
i

is updated via dual-ascent using a step-length ρ. Intuitively, the dual-ascent update of β

penalizes any violation of the constraint in problem (3.4). Next, we make the following

interesting observations in these updates:

• Update for at+1
i : When (3.7) is solved to optimality, ai admits an exact closed-form

solution given by,

ai =
1

βi
∑K

k=1 exp(wT
k xi)

, (3.9)

• Update for βt+1
i : As a consequence of the above exact solution for ai, the dual-ascent

update for βi is no longer needed, since the penalty is always zero during such a

projection if βi is set to a constant equal to 1.
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• Update for W t+1
k : This is the only update that we need to handle numerically.

L2(W,A) can be first written in this form,

L2(W,B) =

N∑
i=1

K∑
k=1

(
λ

2N
‖wk‖2 −

1

N
yikw

T
k xi −

1

NK
bi

+
1

N
exp(wT

k xi + bi)−
1

NK

)
(3.10)

where we denote bi = log(ai) for convenience and B = {bi}i=1,...,N . The objective function is

now doubly-separable [Yun, 2014] since,

L2(w1, . . . , wK , b1, . . . , bN ) =

N∑
i=1

K∑
k=1

fki(wk, bi) (3.11)

where

fki(wk, bi) =
λ

2N
‖wk‖2 −

yikw
T
k xi

N
+

exp(wT
k xi + bi)

N
− bi
NK

− 1

NK
(3.12)

Obtaining such a form for the objective function is key to achieving simultaneous data and

model parallelism. It is worth pointing out that such an objective function can also be

derived using the variational form for the log-partition function [Bouchard, 2007].

Stochastic Optimization: Minimizing L2(W,B) involves computing the gradients

of eqn (3.10) w.r.t. wk which is often computationally expensive. Instead, one can compute

stochastic gradients [Robbins and Monro, 1951] which are computationally cheaper than the

exact gradient, and perform stochastic updates as follows:

wk ← wk − ηtK
(
λwk − yikxi + exp(wT

k xi + bi)xi
)

(3.13)

where ηt is the learning rate for wk in the t-th iteration.

Our reformulation DS-MLR in eqn (3.10) offers some key advantages namely,:
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1. The objective function L2(W,B) splits as summations over N data points and K

classes. Therefore, each term in the stochastic updates only depends one data point i

and one class k. We exploit this to achieve hybrid parallelism.

2. We are able to update the variational parameters bi in closed-form, avoiding noisy

stochastic updates. This improves our overall convergence.

3. Our formulation lends itself nicely to an asynchronous implementation. Section 3.5.2

describes this in more detail.

3.5 Distributing the Computation of DS-MLR

3.5.1 DS-MLR Synchronous

We first describe the distributed DS-MLR Synchronous algorithm in Algorithm 3.

The data and parameters are distributed among the P processors as illustrated in Figure 3.1

where the row-blocks and column-blocks represent data X(p) and weights W (p) on each local

processor respectively. The algorithm proceeds by running T iterations in parallel on each of

the P workers arranged in a ring network topology.

Each iteration consist of 2P inner-epochs. During the first P inner-epochs, each

worker sends/receives its parameters W (p) to/from the adjacent machine and performs

stochastic W (p) updates using the block of data X(p) and parameters W (p) that it owns. The

second P inner-epochs are used to pass around the W (p) to compute the b(p) exactly using

(3.9).
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Figure 3.1: P = 4 inner-epochs of distributed SGD. Each worker updates mutually-exclusive

blocks of data and parameters as shown by the dark colored diagonal blocks [Gemulla et al.,

2011].

3.5.2 DS-MLR Asynchronous

The performance of DS-MLR Sync can be significantly improved by performing

computation and communication in parallel. Thanks to the double-separable nature of our

objective function (3.10), this can be easily achieved by applying the NOMAD algorithm

Yun et al. [2013]. The entire DS-MLR Async algorithm is described in Algorithm 4.

The algorithm begins by distributing the data and parameters among P workers in

the same fashion as in the synchronous version. However, here we also maintain P worker

queues. Initially the parameters W (p) are distributed uniformly at random across the queues.

The workers subsequently can run their updates in parallel as follows: each one pops a

parameter wk out the queue, updates it stochastically and pushes it into the queue of the

next worker. Simultaneously, each worker also records the partial sum (the local contribution

of each worker towards the global normalization constant
∑K

k=1 exp
(
wT
k xi
)
that is required

for updating the variational parameters. This process repeats until K updates have been

made which is equivalent to saying that each worker has updated every parameter wk.
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Algorithm 3 DS-MLR Synchronous
1: K: # classes, P : # workers, T : total outer iterations, t: outer iteration index, s: inner

epoch index

2: W (p): weights per worker, b(p): variational parameters per worker

3: Initialize W (p) = 0, b(p) = 1
K

4: for all p = 1, 2, . . . , P in parallel do

5: for all t = 1, 2, . . . , T do

6: for all s = 1, 2, . . . , P do

7: Send W (p) to worker on the right

8: Receive W (p) from worker on the left

9: Update W (p) stochastically using (3.13)

10: end for

11: for all s = 1, 2, . . . , P do

12: Send W (p) to worker on the right

13: Receive W (p) from worker on the left

14: Compute partial sums

15: end for

16: Update b(p) exactly (3.9) using the partial sums

17: end for

18: end for

Following this, the worker updates all its variational parameters b(p) exactly using the partial

sums (3.9). For simplicity of explanation, we restricted Algorithm 4 to P workers on a

single-machine. However, in our actual implementation, there are multiple threads running
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Algorithm 4 DS-MLR Asynchronous
1: K: total # classes, P : total # workers, T : total outer iterations, W (p): weights per

worker

2: b(p): variational parameters per worker, queue[P ]: array of P worker queues

3: Initialize W (p) = 0, b(p) = 1
K //Initialize parameters

4: for k ∈W (p) do

5: Pick q uniformly at random

6: queue[q].push((k,wk)) //Initialize worker queues

7: end for

8: //Start P workers

9: for all p = 1, 2, . . . , P in parallel do

10: for all t = 1, 2, . . . , T do

11: repeat

12: (k,wk)← queue[p].pop()

13: Update wk stochastically using (3.13)

14: Compute partial sums

15: Compute index of next queue to push to: q̂

16: queue[q̂].push((k,wk))

17: until # of updates is equal to K

18: Update b(p) exactly (3.9) using the partial sums

19: end for

20: end for
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on a single machine in addition to multiple machines sharing the load across the network.

Therefore, in this setting, each worker (thread) first passes around the parameter wk across

all the threads on its machine. Once this is completed, the parameter is tossed onto the

queue of the first thread on the next machine.

3.6 Convergence Analysis

In this section, we present the convergence analysis of DS-MLR. The flavor of

stochasticity we use in DS-MLR is sampling without replacement [Shamir, 2016], which is also

popularly known as Incremental Gradient Descent [Nedić and Bertsekas, 2001], [Bertsekas,

2011] and is found to converge faster1 in practice than vanilla sampling with replacement SGD

[HaoChen and Sra, 2018]. For the asynchronous case, we make an additional assumption

which is a sufficient condition to characterize gradient delays. Such a condition has been

widely used to prove convergence of asynchronous SGD algorithms as discussed in [Zhang

et al., 2018]. Theorem 1 presents the rate for the synchronous version of DS-MLR.

Theorem 1. Suppose all ‖xi‖ ≤ r for a constant r > 0. Let the step size ηt in (3.13)

decay at the rate of η0√
t
where η0 is a carefully tuned hyper-parameter. Then, under standard

assumptions of smoothness, strong convexity, lipschitz hessian and bounded gradients,

E[‖wt,n
k −w∗k‖2] ≤

‖w1,n
k −w∗k‖2 +

2η20M2

η0M1−1√
t

, ∀t = {1, 2, . . . , T} (3.14)

where wt,n
k is value of parameter vector wk at outer and inner iterations indexed by t and n

respectively, w∗k is the optimal solution, xi denotes the data point, M1 = nC4 and M2 = n2C5

1[Bertsekas, 2011] outlines exact conditions under which Incremental Gradient Descent converges namely:
diminishing step sizes and choosing indices in a cyclic order, and re-shuffling at the end of cycle. Our
implementation of DS-MLR follows these guidelines closely.
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(a) Initial assignment of W and X. Each

worker works only on the diagonal active area

in the beginning.
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k, it sends the corresponding item parameter

wk to another worker. Here, w2 is sent from

worker 1 to 4.
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(d) During the execution of the algorithm, the

ownership of the global parameters (weight

vectors) wk changes.

Figure 3.2: Illustration of the communication pattern in DS-MLR Async algorithm. Parameter

vector wk is exchanged in a de-centralized manner across workers without the use of any

parameter servers [Li et al., 2013].
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(where constants C4 and C5 depend on L and µ).

Proof is available in Appendix A. The key steps in our analysis are as follows:

• First, for the t-th iteration, we introduce a random variable Rt to absorb the effects of

re-shuffling the indices within the epoch by closely following results in [HaoChen and

Sra, 2018].

• Second, to account for the delay and staleness in updates for wk in the inner-iterations,

we prove and make use of Lemma 3 to bound the staleness in ∇fi.

• Finally, we prove our main result using a proof by induction (see Lemma 4) argument

revealing the 1√
t
rate.

Remark: Our analysis can also be easily adapted to prove 1
t rate using step-size

of η0t . However, in practice, we found η0√
t
to be slightly more stable. Using an assumption on

boundedness of the delay, we can use of results in [Zhang et al., 2018] to achieve 1√
t
rates for

DS-MLR Async for a suitable diminishing step-size sequence.

3.7 Experiments

In our empirical study, we analyze the behavior of DS-MLR Async by running

it on several real-world datasets of varying scale. Table 5.2 provides a summary of their

characteristics.

Hardware: All single-machine experiments were run on a cluster with the configu-

ration of two 8-core Intel Xeon-E5 processors and 32 GB memory per node. For multi-machine

multi-core, we used Intel vLab Knights Landing (KNL) cluster with node configuration of
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Dataset # instances # features #classes data (train + test) parameters density (% nnz)

CLEF 10,000 80 63 9.6 MB + 988 KB 40 KB 100

NEWS20 11,260 53,975 20 21 MB + 14 MB 9.79 MB 0.21

LSHTC1-small 4,463 51,033 1,139 11 MB + 4 MB 465 MB 0.29

LSHTC1-large 93,805 347,256 12,294 258 MB + 98 MB 34 GB 0.049

ODP 1,084,404 422,712 105,034 3.8 GB + 1.8 GB 355 GB 0.0533

YouTube8M-Video 4,902,565 1,152 4,716 59 GB + 17 GB 43 MB 100

Reddit-Small 52,883,089 1,348,182 33,225 40 GB + 18 GB 358 GB 0.0036

Reddit-Full 211,532,359 1,348,182 33,225 159 GB + 69 GB 358 GB 0.0036

Table 3.3: Characteristics of the datasets used

Intel Xeon Phi 7250 CPU (64 cores, 200GB memory), connected through Intel Omni-Path

(OPA) Fabric.

Baselines and Implementation Details: We implemented DS-MLR in C++

using MPI for communication across nodes and Intel TBB for concurrent queues and multi-

threading. Although, there exist numerous data and model parallel methods, we use L-BFGS

and LC Gopal and Yang [2013] as representative baselines. To make the comparison fair, we

re-implemented the LC method in C++ and MPI using ALGLIB for inner optimization. For

the L-BFGS baseline, we used the TAO solver (from PETSc).

Reproducibility: The hyper-parameter values and node configuration used in our

experiments are in Table 5.2. Code and scripts required for reproducing the experiments

are readily available for download from https://bitbucket.org/params/dsmlr. The repository

includes instructions to compile and run the code and scripts to launch the jobs on a HPC
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cluster with similar capability as ours.

3.7.1 Comparison with other methods

SMALL SCALE DATASETS:

For this experiment, we compare DS-MLR, L-BFGS and the LC methods on small scale

datasets CLEF, NEWS20, LSHTC1-small which can easily fit in the memory of a single

machine and therefore require no parallelism. In such scenarios, a second order methods
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Figure 3.3: Data and Model both fit in memory. In each plot, P=N×M×T denotes

that there are N nodes each running M mpi tasks, with T threads each. λ and η refer to

regularization and learning-rate.

such as L-BFGS are theoretically expected to out-perform stochastic methods due their
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superior quadratic convergence rates. In our experiments, we observed that it is indeed the

case. When comparing DS-MLR against LC (which is our model parallel baseline method)

we found that DS-MLR consistently shows a faster decrease in objective value compared to

LC on all three datasets: NEWS20, LSHTC1-small and CLEF. LC stalls towards the end

and progresses very slowly as seen in the plots. Figure 3.3 shows the progress of objective

function as a function of time for DS-MLR, L-BFGS and LC on the three datasets.

LARGE SCALE DATASETS:

LSHTC1-large: L-BFGS requires all its parameters to fit on one machine and is therefore

not suited for model parallelism (even a modest dataset such as LSHTC1-large requires ≈

4.2 billion parameters or ≈ 34GB). Thus, parallelizing L-BFGS would involve duplicating 34

GB of parameters across all its processors. We ran both DS-MLR and LC using 48 workers.

Figure 3.4 (left) shows how the objective function changes vs time for DS-MLR and LC. As

can be seen, DS-MLR out performs LC by a wide-margin despite the advantage LC has by

duplicating data across all its processors.

ODP: We ran DS-MLR on ODP dataset 2 which has a huge model parameter size

of 355 GB. For this experiment we used 20 nodes × 1 mpi task × 260 threads. The progress

in decreasing the objective function value is shown in Figure 3.4 (right). LC method being a

second-order method has a very high per-iteration cost and it takes an enormous amount of

time to finish even a single iteration.

YouTube8M-Video: This dataset was created by pre-processing the publicly

available dataset of youtube video embeddings 3 into a multi-class classification dataset
2https://github.com/JohnLangford/vowpal_wabbit/tree/master/demo/recall_tree/odp
3https://research.google.com/youtube8m/
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Figure 3.4: Data fits and Model does not fit.

consisting of 4,716 classes and 1,152 features. Since it was created from features derived from

embeddings, it is a dense dataset. We used the configuration of 4 nodes × 1 mpi tasks ×
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Figure 3.5: Data does not fit and Model fits.

260 threads to run DS-MLR on this dataset and we observed a fast convergence as shown in

Figure 3.5. This is likely because DS-MLR being non-blocking and asynchronous in nature

runs at its peak performance on a dense dataset such as YouTube8M-Video, since the number

of non-zeros in the data remains uniform across all its workers.

Reddit datasets: In this sub-section, we demonstrate the capability of DS-MLR

to solve a multi-class classification problem of massive scale, on a new benchmark dataset
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RedditFull which we created out of 1.7 billion reddit user comments spanning the period

2007-2015. Our aim is to classify a particular reddit comment into a suitable sub-reddit.
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Figure 3.6: Data does not fit and Model does not fit.

The data and model parameters occupy 228 GB and 358 GB respectively. Therefore, both

L-BFGS and LC cannot be applied here. We also created a smaller subset of this dataset

Reddit-Small by sub-sampling around 50 million data points. The result of running DS-MLR

on these two datasets are shown in Figure 3.6.

3.7.2 Predictive performance

In this section, we plot the cumulative distribution function (CDF) of ranks of

test labels. This is a proxy for the precision@k curve and gives a more closer indication of

the predictive performance of a multinomial classification algorithm. In Figure 3.7, we plot

the precision obtained after the first 5 iterations (denoted by dashed lines), and after the

end of optimization (denoted by solid lines). As seen, DS-MLR performs competitively well

compared to other methods in all datasets, and in general tends to give a good accuracy

within the first 5 iterations. Using the top 1
4 fraction of total K classes was enough to get a
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predictive performance of around 95% in all datasets.
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Figure 3.7: Cumulative distribution function (CDF) of predictive ranks of the test labels for

three sample datasets. DS-MLR performs competitively well within the first 5 iterations.

Using roughly 1
4 top-k classes was enough to get a predictive performance of around 95% in

all datasets.

3.7.3 Scalability

In Figures 3.8 and 3.9, we analyze the scaling behavior of DS-MLR under the

settings of multi-machine and multi-thread parallelism. We picked a dataset for each of these

scenarios: YouTube8M-Video and LSHTC1-large respectively. We plot the rate of change in

objective function as well as the f-score as the number of workers (# machines × # cores
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Figure 3.8: Scalability analysis of DS-MLR on YouTube8M-Video dataset: Change in

objective function and test f1-score vs computation time varying the # of workers (machines).

× # threads) is varied. For YouTube8M-Video dataset, we vary the number of machines

as 1, 2, 4, 8, 16. For LSHTC1-large, DS-MLR can handle this dataset on a single machine,

therefore, we simply vary the number of threads on a single machine (as a single mpi task)

as 1, 2, 4, 8, 16, 20. In an ideal scenario with linear scaling, we would expect all the figures

to overlap with each other. From the plot we observe that multi-thread behavior is pretty

close to the ideal behavior while in multi-machine case there is some slowdown with 8 and 10

workers. This is most likely due to the communication and network overheads in the cluster.

3.8 Conclusion

In this chapter, we present a novel distributed stochastic optimization algorithm

DS-MLR to solve multinomial logistic regression problems having large number of examples

and classes. By exploiting double-separability, we present a reformulation that is hybrid

parallel (both data and model parallel simultaneously). DS-MLR is able to perfectly partition

the workload across P workers, costing O(NDP ) storage for data and O(KDP + N
P ) for the
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Figure 3.9: Scalability analysis of DS-MLR on LSHTC1-large dataset - Change in objective

function and test f1-scores vs computation time varying the # of workers (threads).

model. As a result, DS-MLR can scale to arbitrarily large datasets. DS-MLR is fully

de-centralized unlike the parameter-server architecture. Parameter updates are directly

exchanged asynchronously across workers, eliminating the need for any intermediate servers.

We provide empirical results showing DS-MLR applies to all regimes of distributed machine

learning, especially the case where both data and model sizes exceed the memory capacity of

a single machine. To show this, we created a benchmark dataset (Reddit-Full) to run extreme

multi-class classification with 228 GB data and 358 GB parameters. Future directions of

work include topics such as extreme multi-label classification [Agrawal et al., 2013], [Jain

et al., 2016] and log-linear parameterization for undirected graphical models which exhibit

similar computational challenges.
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Chapter 4

Mixture of Exponential Families

4.1 Introduction

Mixture of exponential family models generalize a wide collection of popular latent

variable models such as Latent Dirichlet Allocation (LDA), Gaussian Mixture Models (GMM),

and Mixed Membership Stochastic Block Models (MM-SBM). In recent years, variational

inference (VI) has emerged as a powerful technique for parameter estimation in these Bayesian

models Wainwright and Jordan [2008], Blei et al. [2016]. One attractive property of VI is

that it reduces parameter estimation to the task of optimizing a objective function, often

with a well defined “structure”. This opens up the possibility of bringing to bear mature tools

from optimization to tackle massive problems. Traditionally, VI in mixture models involves

alternating between updating global variables and local variables. Both these operations

involve accessing all the data points. Large datasets are usually stored on disk, and the cost

of accessing every datapoint to perform updates is prohibitively high.

The first approach to tackle this, is to divide the data across multiple machines and
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use a distributed framework such as map-reduce to aggregate the computations [Neiswanger

et al., 2015]. The second approach, is to exploit the underlying structure of the optimization

problem to reduce the number of iterations (and therefore the corresponding data access)

[Hoffman et al., 2013]. The key observation here is that the optimization problem correspond-

ing to the local variables is separable, that is, it can be written as a sum of functions, where

each function only depends on one data point. Therefore, one can use stochastic optimization

to update the local variables. Moreover, in Stochastic Variational Inference (SVI) [Hoffman

et al., 2013], even before one pass through the dataset, the global variables are updated

multiple times, and therefore the model parameters converge rapidly towards their final values.

The argument is similar in spirit to how stochastic optimization outperforms batch algorithms

for maximum aposteriori (MAP) estimation Bottou and Bousquet [2011]. Consequently, SVI

enabled applying variational inference to datasets with millions of documents such as Nature

and NewYork Times Hoffman et al. [2013], which could not be handled before.

what fits in memory Data, Parameters Parameters Data None

Distributed-VI X X 7 7

SVI X 7 7 7

ESVI X X X X

Table 4.1: Applicability of the three bayesian inference algorithms - Variational Inference

(VI), Stochastic Variational Inference (SVI) and Extreme Stochastic Variational Inference

(ESVI) to common scenarios in distributed machine learning.

With the advent of the big-data era, we now routinely deal with industry-scale

problems involving billions of documents and tokens. Such massive datasets pose another
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challenge, which, unfortunately neither VI nor SVI are able to address; namely, the set of

parameters is so large that all the parameters do not fit on a single processor1. For instance, if

we have D dimensional data and K mixture components, then the parameter size is O (DK).

If D is of the order of millions and K is in the 100’s or 1000’s, modest numbers by todays

standards, the parameter size is a few 100s of GB (see our experiments in Section 5.5).

In this chapter, we propose a new framework, Extreme Stochastic Variational

Inference (ESVI) to address these challenges. The main contributions of this work are:

1. We develop a novel approach to achieve simultaneous data and model parallelism in

mixture models by exploiting the following key idea: instead of updating all the K

coordinates of a local variable and then updating all K global variables, we propose

updating a small subset of the local variables and the corresponding global variables

(see Theorem 2 for proof of correctness). The global variables are exchanged across

the processors, and this ensures mixing (see Section 4.4.2 for more details). This

seemingly simple idea has some powerful consequences. It allows multiple processors

to simultaneously perform parameter updates independently.

2. Using a classic owner-computes paradigm, we make ESVI asynchronous and lock-free,

and thus avoid expensive bulk synchronization between processors. We present an

extensive empirical study to evaluate the performance of ESVI by applying it to GMM

and LDA models on several large real-world datasets. We find that ESVI outperforms

VI and SVI both in terms of time as well as the quality of solutions obtained. For

practitioners, ESVI offers the advantage of not having to tune a learning rate, since it
1The discussion in this chapter applies to the shared memory, distributed memory, as well as hybrid

settings, and therefore we will use the term processor to denote either a thread or a machine.

70



makes closed form parameter updates unlike SVI.

3. We develop a variant ESVI-LDA-TOPK to speed up computation and save memory

when fitting large number of topics. Empirically, we found that using the most frequent

25% of the topics was enough to obtain the same level of accuracy as storing all the

topics.

To the best of our knowledge there is no existing algorithm for VI that sports these

desirable properties. Although, in principle, ESVI is applicable even when data and/or model

parameters fit in memory, it truly shines for massive datasets where both model and data

parallelism are essential.

The rest of the chapter is structured as follows: We present an exhaustive study

of related work in Section 4.2. We briefly review VI and SVI in Section 4.3. We present

our new algorithm ESVI in Section 4.4, and discuss its advantages. Empirical evaluation is

presented in Section 5.5 and Section 4.6 concludes the chapter.

4.2 Related Work

Recent research on VI has focused on extending it to non-conjugate models [Wang

and Blei, 2013] and developing variants that can scale to large datasets such as SVI [Hoffman

et al., 2013]. Other than the fact that SVI is inherently serial, it also suffers from another

drawback: storage of the entire D×K matrix θ on a single machine. On the other hand, our

method, ESVI, exhibits model parallelism; each processor only needs to store 1/P fraction of

θ. Black-box variational inference (BBVI) [Ranganath et al., 2014] generalizes SVI beyond

conditionally conjugate models. The paper proposes a more generic framework by observing
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that the expectation in the Evidence Lower Bound (ELBO) can be exploited directly to

perform stochastic optimization. We view this line of work as complementary to our research.

It would be interesting to verify if an ESVI like scheme can also be applied to BBVI.

There has been a flurry of work in the past few years in developing data-parallel

distributed methods for Approximate Bayesian Inference. One such popular work includes a

classic Map-Reduce style inference algorithm [Neiswanger et al., 2015], where the data is

divided across several worker nodes and each of them perform VI updates in parallel until

a final synchronization step during which the parameters from the slaves are combined to

produce the final result. This method suffers from the well-known curse of the last reducer,

that is, a single slow machine can dramatically slow down the performance. ESVI does

not suffer from this problem, because our asynchronous and lock-free updates avoid bulk

synchronization altogether.

[Broderick et al., 2013] presents an algorithm that applies VI to the streaming

setting by performing asynchronous Bayesian updates to the posterior as batches of data

arrive continuously, which is similar in spirit to Hogwild [Recht et al., 2011]. Their approach

uses a parameter server to enable asynchronous local updates. Unlike ESVI, their work

cannot guarantee that - (a) each worker works on the latest parameters, (b) the global

parameters are all parallely updated. In [Archambeau and Ermis, 2015] the authors present

Incremental Variational Inference which is also a distributed variational inference algorithm,

however it is also only data-parallel. Besides, it requires tuning of a step-size and sequential

access of global parameters. ESVI avoids these drawbacks.

A number of data-parallel approaches exist in the Exact Bayesian Inference literature
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as well. [Hasenclever et al., 2017] is a distributed MCMC based approach where workers

perform MCMC updates locally and these are aggregated by maintaining a posterior server.

[Yu et al., 2015a] proposed a distributed asynchronous algorithm for parameter estimation in

LDA Blei et al. [2003]. However, the algorithm is specialized to collapsed Gibbs sampling

for LDA, and it is unclear how to extend it to other, more general, mixture models. ESVI

in contrast is a purely VI based method and provides model-parallelism in addition to data-

parallelism.

Somewhat close to our ESVI-TOPK approach is Memoized Online Variational

Inference for DP Mixture Models [Hughes and Sudderth, 2013]. This paper describes the

application of Expectation Truncation to mixture models. In their L-sparse method, unused

dimensions are set to zero and used dimensions are shifted. In ESVI-TOPK, unused

dimensions are averaged (1-sum of used dimensions).

Another related line of work is Sparse EM [Neal and Hinton, 1998]. There are some

high-level similarities to ESVI in that both the methods update a subset of latent variables

at any given time while keeping others frozen. However there are some crucial differences: (a)

Sparse EM is not a parallel algorithm while ESVI is, (b) Sparse EM needs to iterate between

sparse EM update and full EM update (to select active dimensions occasionally) while each

ESVI worker’s job queue will continuously distribute Z’s dimensions to ensure a good mixing,

(c) Sparse EM selects active dimensions based on values of Z, while ESVI is designed to

ensure the active dimensions of each worker is an unbiased sample of all dimensions.

Since the coordinate-ascent algorithm in VI can be formulated as a message passing

scheme applied to general graphical models, we believe ESVI is also related to Variational

73



Message Passing [Winn and Bishop, 2005]. This connection could be made more concrete if

we assume a Mixture Model setup in both cases. Both the d-VMP algorithm (Algorithm

2 in [Masegosa et al., 2017]) and ESVI de-couple the global parameters to make the up-

dates scalable, however they differ in some fundamental aspects. d-VMP defines a disjoint

partitioning of the global parameters based on their markov-blankets. In contrast, ESVI

completely decentralizes the global parameter updates by requiring that the local variables

(or assignment vector zi) need to only satisfy local summation constraints (as discussed in

Theorem 2 in Section 4.4). As a side-note, the local updates in d-VMP algorithm do not

seem to be de-coupled across the mixture components, whereas this holds true in the case of

ESVI.

4.3 Parameter Estimation for Mixture of Exponential Families

4.3.1 Generative Model

The following data generation scheme underlies a mixture of exponential family

model (Table 4.2 defines the notations):

Prior:

p (π|α) = Dirichlet (α) (4.1)

p (θk|nk, νk) = exp (〈nk · νk, θk〉 − nk · g (θk)− h (nk, νk)) (4.2)

where, nk and νk are the parameters of the conjugate prior p (θk|nk, νk).
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Symbol Definition

N total number of observations

D total number of dimensions

K total number of mixture components

∆K K-dimensional simplex

x = {x1, . . . , xN}, xi ∈ RD observations

z = {z1, . . . , zN}, zi ∈ ∆K the component data point xi was drawn from (local variable)

θ = {θ1, . . . , θK}, θk ∈ RD sufficient statistics of the exponential family distribution (global variable)

π ∈ ∆K mixing coefficients (global variable)

z̃ = {z̃1, . . . , z̃N}, z̃i ∈ ∆K variational parameter for z (local variable)

θ̃ =
{
θ̃1, . . . , θ̃K

}
, θ̃k ∈ RD variational parameter for θ (global variable)

π̃ ∈ ∆K variational parameter for π (global variable)

Table 4.2: Notations for Mixture of Exponential Family Model. ∼ denotes variational

parameters.
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Likelihood:

p (zi|π) = Multinomial (π) (4.3)

p (xi|zi, θ) = exp (〈φ (xi, zi) , θzi〉 − g (θzi)) (4.4)

where, φ denotes the sufficient statistics. Observe that p (θk|nk, νk) is conjugate to p (xi|zi = k, θk),

while p (π|α) is conjugate to p (zi|π).

Joint Distribution:

p (x, π, z, θ|α, n, ν) = p (π|α) ·
K∏
k=1

p (θk|nk, νk) ·
N∏
i=1

p (zi|π) · p (xi|zi, θ) (4.5)

4.3.2 Variational Inference and Stochastic Variational Inference

The goal of inference is to estimate p (π, z, θ|x, α, n, ν). This however, involves an

intractable marginalization. Therefore, variational inference [Blei et al., 2016] approximates

this distribution with a fully factorized distribution 2:

q
(
π, z, θ|π̃, z̃, θ̃

)
= q (π|π̃) ·

N∏
i=1

q (zi|z̃i) ·
K∏
k=1

q
(
θk|θ̃k

)
. (4.6)

Note that z̃i ∈ ∆K and zi,k = q (zi = k|z̃i). Moreover, each of the factors in the variational

distribution is assumed to belong to the same exponential family as their full conditional

counterparts in (4.5). The variational parameters are estimated by maximizing the following

evidence lower-bound (ELBO) [Blei et al., 2016]:

L
(
π̃, z̃, θ̃

)
= Eq(π,z,θ|π̃,z̃,θ̃) [log p (x, π, z, θ|α, n, ν)]

−Eq(π,z,θ|π̃,z̃,θ̃)

[
log q

(
π, z, θ|π̃, z̃, θ̃

)]
(4.7)

2A ∼ over a symbol is used to denote that it is a parameter of the variational distribution. See Table 5.1.
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VI performs coordinate ascent updates on L by optimizing each set of variables, one at a

time.

Update for π̃k:

π̃k = α+
N∑
i=1

z̃i,k (4.8)

Update for θ̃k: The components of θ̃k namely ñk and ν̃k are updated as follows:

ñk = nk +Nk (4.9)

ν̃k = nk · νk +Nk · x̄k (4.10)

where Nk =
∑N

i=1 z̃i,k and x̄k = 1
Nk

∑N
i=1 z̃i,k · φ (xi, k).

Update for z̃i: Let ui be a K dimensional vector whose k-th component is given by

ui,k = ψ (π̃k)− ψ
(

K∑
k′=1

π̃k′

)
+
〈
φ (xi, k) ,Eq(θk|θ̃k) [θk]

〉
− Eq(θk|θ̃k) [g (θk)] (4.11)

z̃i,k =
exp (ui,k)∑K

k′=1 exp
(
ui,k′

) (4.12)

It has to be noted that the summation term ψ
(∑K

k′=1 π̃k′
)
cancels out during the z̃i,k update

in (4.12).

The VI algorithm [Wainwright and Jordan, 2008, Blei et al., 2016] iteratively updates

all the local variables z̃i before updating the global variables π̃k and θ̃k (see Algorithm 5). In

contrast, SVI [Hoffman et al., 2013], updates z̃i corresponding to one data point xi, followed

by updating the global parameters π̃ and θ̃ (see Algorithm 6).
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Algorithm 5 VI
1: for i = 1, . . . , N do

2: Update z̃i using (4.12)

3: end for

4: for k = 1, . . .K do

5: Update π̃k using (4.8)

6: Update θ̃k using (4.9) and (4.10)

7: end for

Algorithm 6 SVI
1: Generate step size sequence ηt ∈ (0, 1)

2: Pick an i ∈ {1, . . . , N} uniformly at random

3: Update z̃i using (4.12)

4: for k = 1, . . .K do

5: Update π̃k ← (1− ηt)π̃k + ηt (α+N · z̃i,k)

6: ˆ̃
θk={nk +N · z̃i, nk · νk +N · z̃i,k · φ (xi, k)}

7: Update θ̃k ← (1− ηt)θ̃k + ηt
ˆ̃
θk

8: end for
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4.4 Extreme Stochastic Variational Inference (ESVI)

Algorithm 7 ESVI
1: Sample i ∈ {1, . . . , N}

2: Select K ⊂ {1, . . . ,K}

3: Update z̃i,k for all k ∈ K (see below)

4: Update π̃k for all k ∈ K using (4.8)

5: Update θ̃k for all k ∈ K using (4.9), (4.10)

Algorithm 7 illustrates our proposed updates in ESVI. Before we discuss why

this update is advantageous for parallelization, let us first study why updating a subset

of coordinates of z̃i is justified. Plugging in (4.5) and (4.6) into (4.7), and restricting

our attention to the terms in the above equation which depend on zi, substitute (4.4),

z̃i,k = q (zi = k|z̃i) and Eq(π|π̃) [log p (zi = k|π)] = ψ (π̃k) − ψ
(∑K

k′=1 π̃k′
)
, to obtain the

following objective function,

L
(
z̃i|π̃, θ̃

)
=

K∑
k=1

z̃i,k ·
(
ψ (π̃k)− ψ

(
K∑
k′=1

π̃k′

))
+

K∑
k=1

z̃i,k ·
(〈
φ (xi, k) ,Eq(θk|θ̃k) [θk]

〉
−Eq(θk|θ̃k) [g (θk)]− log z̃i,k

)
. (4.13)

Now using the definition of ui,k in (4.11), one can compactly rewrite the above

objective function as

L
(
z̃i|π̃, θ̃

)
=

K∑
k=1

z̃i,k · (ui,k − log z̃i,k) . (4.14)

Moreover, to ensure that z̃i,k is a valid distribution, one needs to enforce the
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following constraints:

∑
k

z̃i,k = 1, 0 ≤ z̃i,k ≤ 1. (4.15)

Theorem 2 shows that one can find a closed form solution to maximizing (4.14)

even if we restrict our attention to a subset of coordinates.

Theorem 2. For 2 ≤ K ′ ≤ K, let K ⊂ {1, . . . ,K} be s.t. |K| = K ′. For any C > 0, the

problem

max
zi∈RK′

LK =
∑
k∈K

z̃i,k · ui,k − z̃i,k · log z̃i,k

s.t.
∑
k∈K

z̃i,k = C and 0 ≤ z̃i,k, (4.16)

has the closed form solution:

z̃∗i,k = C
exp (ui,k)∑

k′∈K exp
(
ui,k′

) , for k ∈ K. (4.17)

Proof We prove that z̃∗i is a stationary point by checking the KKT conditions for (4.16).

Let h (z̃i) =
(∑

k∈K z̃i,k
)
− C and gk (z̃i) = −zi,k. It is clear that z̃∗i satisfies the primal

feasibility. Now consider KKT multipliers:

λ = log
C∑

k′∈K exp
(
ui,k′

) , and µk = 0.
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We have

∇kLK (z̃∗i ) = ui,k − log(z̃∗i,k)− 1

= ui,k −
(
ui,k + log

C∑
k′∈K exp(ui,k′)

)
= log

C∑
k′∈K exp(ui,k′)

λ∇kh(z̃∗i ) = log
C∑

k′∈K exp(ui,k′)

µk∇kgk′(z̃∗i ) = 0.

Then it is easy to verify that ∇kLK(z̃∗i ) = λ = λ∇kh(z̃∗i ). Thus, z̃∗i satisfies the stationarity

condition:

∇LK(z̃∗i ) = λ∇h(z̃∗i ) +
K∑
k=1

µk∇gk(z̃∗i ).

Due to choice of µk = 0, complementary slackness and dual feasibility are also satisfied.

Thus, z̃∗i is the optimal solution to (4.16).

Theorem 2 suggests the following strategy: start with a feasible z̃i, pick, say, a pair

of coordinates z̃i,k and z̃i,k′ and let z̃i,k + z̃i,k′ = C. Solve (4.16), which has the closed form

solution (4.17). Clearly, if z̃i satisfied constraints (4.15) before the update, it will continue to

satisfy the constraints even after the update. On the other hand, the conditional ELBO (4.14)

increases as a result of the update. Therefore, ESVI is a valid coordinate ascent algorithm

for improving the ELBO (4.7).
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4.4.1 Access Patterns

In this section we compare the access patterns of variables in the three algorithms

to gain a better understanding of their abilities to be parallelized efficiently. In VI, the

updates for π̃ and θ̃ requires access to all z̃i, while update to z̃i requires access to π̃ and all

θ̃k. Refer to Figure 4.1 for an illustration.

z̃ x

π̃
θ̃

(a) π̃ update

z̃ x

π̃
θ̃

(b) θ̃ update

z̃ x

π̃
θ̃

(c) z̃ update

Figure 4.1: Access pattern of variables during Variational Inference (VI) updates. Green

indicates that the variable or data point is being read, while red indicates that the variable

is being updated.

On the other hand, in case of SVI (see Figure 4.2), the access pattern is somewhat

different. The updates for π̃ and θ̃ require access to only the z̃i that was updated, however

the update to z̃i still requires access to π̃ and all the θ̃k. This is a crucial bottleneck to model

parallelism.

Bottleneck to Model Parallelism: The local variable z̃i needs to be normalized

in order to be maintained on the k-dimensional simplex ∆k after the update (4.12). This is

the primary bottleneck to model parallelism in both VI and SVI, since this requires access

to all K components. In ESVI, we propose a novel way to overcome this barrier, leading to
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completely independent local and global variable updates.

z̃ x

π̃
θ̃

(a) π̃ update

z̃ x

π̃
θ̃

(b) θ̃ update

z̃ x

π̃
θ̃

(c) z̃ update

Figure 4.2: Access pattern of variables during Stochastic Variational Inference (SVI) updates.

Green indicates that the variable or data point is being read, while red indicates that the

variable is being updated.

The following access pattern of ESVI allows multiple processors to access and

update mutually exclusive subsets of coordinates K independently (See Figure 4.3 for an

illustration):

• The update for π̃ (4.8) requires access to the coordinates z̃i,k for k ∈ K.

• The update for θ̃ (4.9) and (4.10) requires access to z̃i,k for k ∈ K.

• The update to z̃i,k for k ∈ K requires access to π̃k and θ̃k for k ∈ K.

4.4.2 Parallelization

In this sub-section, we describe the parallel asynchronous algorithm of ESVI. Let

P denote the number of processors, and let Ip ⊂ {1, . . . , N} denote indices of the data

points owned by processor p. z̃i for i ∈ Ip are local variables assigned to processor p. The

global variables are split across the processors. Let Kp ⊂ {1, . . . ,K} denote the indices of
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z̃ x

π̃
θ̃

(a) π̃ update

z̃ x

π̃
θ̃

(b) θ̃ update

z̃ x

π̃
θ̃

(c) z̃ update

Figure 4.3: Access pattern during ESVI updates. Green indicates the variable or data point

being read, while Red indicates it being updated.

the rows of θ̃ currently residing in processor p. Then processor p can update any z̃i,k for

i ∈ Ip and k ∈ Kp. Finally, we need to address the issue of how to communicate θ̃k across

processors. For this, we follow the asynchronous communication scheme outlined by [Yun

et al., 2014b] and [Yu et al., 2015b]. Figure 5.3 is an illustration of how this works pictorially.

We partition the data and the corresponding z̃1:N variables across the processors. Each

processors maintains its own queue. Once partitioned, the z̃ variables never move. On the

other hand, the θ̃ variables move nomadically3 between processors. Each processor performs

ESVI updates using the current subset of θ̃ variables that it currently holds. Then the

variables are passed on to the queue of another randomly chosen processor as shown in the

second sub-figure in Figure 5.3. It is this nomadic movement of the θ̃ variables that ensures

proper mixing and convergence. The complete algorithm for parallel-ESVI is outlined in

Algorithm 8.
3Nomadic movement [Yun et al., 2014b] refers to the distributed setup, where the ownership of parameters

rapidly keeps changing after every update. Figure 5.3 illustrates this.
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x

θ̃

z̃

π̃

(a) Initial assignment of θ̃ and x. We plot di-

agonal initialization while in real case random

initialization is used.

x

θ̃

z̃

π̃

(b) Worker 1 finishes processing {2, 4} ∈ K1,

it sends them over to a random worker. Here,

θ̃2 is sent from worker 1 to 4 and θ̃4 from 1

to 3.

x

θ̃

z̃

π̃

(c) Upon receipt, the column is processed by

the new worker. Here, worker 4 can now

operate on θ̃2 and 3 on θ̃4

x

θ̃

z̃

π̃

(d) During the execution of the algorithm,

the ownership of the global parameters θ̃k

changes.

Figure 4.4: Illustration of the communication pattern in ESVI (asynchronous) algorithm.

Parameters of same color are in memory of the same worker. Horizontal and Vertical lines

indicate the two directions of partitioning data and parameters. Data x is partitioned

horizontally along N and vertically along D. Local parameter z̃ is partitioned horizontally

along N and vertically along K. Global parameters - π̃ is partitioned vertically along K,

and θ̃ is partitioned horizontally along K and vertically along D. π̃ and θ̃ are nomadically

exchanged. 85



4.4.3 Comparison and Complexity

ESVI updates are stochastic w.r.t. the coordinates, however the update in each

coordinate is exact using (4.17). In contrast, SVI stochastically samples the data and

performs inexact or noisy updates and does not guarantee each step to be an ascent step.

Moreover, given a N ×D dataset and fixing K clusters, by simple calculation we can see

that to update all z̃ik once, VI requires O(DK) updates on θ̃, while SVI needs O(NDK)

and parallel ESVI needs O(PDK).

4.5 Experiments

In our experiments4, we compare our proposed ESVI-GMM and ESVI-LDA

methods against VI and SVI. To handle large number of topics in LDA, we also implemented

a more efficient version ESVI-LDA-TOPK. We use real-world datasets of varying scale

as described in Table 5.2. We used a large-scale parallel computing platform with node

configuration of 20 Intel Xeon E5-2680 CPUs and 256 GB memory. We implemented

ESVI-LDA in C++ using MPICH, OpenMP and Intel TBB. For Distributed-VI and SVI

implementations, we modified the authors’ original code in C5. More details on the parameter

settings and update equations are available in Appendix D, E, F.

4.5.1 ESVI-GMM

We first compare ESVI-GMM with SVI and VI in the Single Machine Single thread

setting. We use a TOY dataset which consists of N = 29, 983 data points, D = 128

4Our code and scripts are publicly available for download at https://bitbucket.org/params/dmixmodels
5http://www.cs.princeton.edu/~blei/lda-c/. Distributed-VI was implemented in Map-Reduce style.
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Algorithm 8 Parallel-ESVI Algorithm
1: P : total number of workers, T : maximum computing time

2: Ip: data points owned by worker p,

3: Kp: global parameters owned by worker p (concurrent queue)

4: Initialize global parameters θ̃0, π̃0

5: for worker p = 1 . . . P asynchronously do

6: while Stop criteria not satisfied do

7: Pick a subset ks ⊂ Kp

8: for All data point i ∈ Ip do

9: for k ∈ ks do

10: Compute z̃∗ik using (4.17)

11: π̃k+ = z̃∗ik − z̃ik

12: ñk+ = z̃∗ik − z̃ik

13: ν̃k+ = (z̃∗ik − z̃ik)× φ (xi, k)

14: z̃ik ← z̃∗ik

15: Pick a random worker p′ and send π̃k and θ̃k, push k to Kp′

16: end for

17: end for

18: end while

19: end for

dimensions and the AP-DATA dataset which consists of N = 2, 246 data points, D = 10, 473

dimensions. In both cases, we set the number components K = 256. We plot the performance

of the methods (ELBO) as a function of time. ESVI-GMM outperforms SVI and VI by quite
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Dataset # documents # vocabulary #words

AP-DATA 2,246 10,473 912,732

NIPS 1,312 12,149 1,658,309

Enron 37,861 28,102 6,238,796

Ny Times 298,000 102,660 98,793,316

PubMed 8,200,000 141,043 737,869,083

UMBC-3B 40,599,164 3,431,260 3,013,004,127

Table 4.3: Data Characteristics

some margin. For Multi Machine case, we use the NIPS and NY Times datasets and only

compare against VI (SVI does not apply; it needs to update all its K global parameters which

is infeasible when K is large). Although typically these datasets do not demand running

on multiple machines, out intention here is to demonstrate scalability to very large number

of components (K = 1024) and dimensions, which is typically the case in large scale text

datasets with millions of word count features. Traditionally, GMM inference methods have

not been able to handle such a scale. Figure 4.5 clearly indicates that ESVI-GMM is able to

outperform VI by a good margin.
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Figure 4.5: Comparison of ESVI-GMM, SVI and VI. P = N × n denotes N machines each

with n threads.

4.5.2 ESVI-LDA

Single Machine Single thread

We compare serial versions of the methods on Enron and NY Times datasets which

are medium sized and fit on a single-machine. On both datasets, we run with single machine

and single thread. For Enron, we set # of topics K = 8, 16, 20, 32, 64, 128, 256. For NY Times,

we set K = 8, 16, 32, 64. To keep the plots concise, we only show results with K = 16, 64, 128

in Figure 4.6 (two left-most plots). ESVI-LDA performs better than VI and SVI in both the

datasets for all values of K. In our experiments, x-axis is in log-scale.
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Single Machine Multi Core

We evaluate the performance of distributed ESVI-LDA against a map-reduce based

distributed implementation of VI, and the streaming SVI method [Broderick et al., 2013].

We vary the number of cores as 4, 8, 16. This is shown in Figure 4.6 (two right-most plots).

For Enron dataset, we use K = 128 and for NY Times dataset, we use K = 64. ESVI-LDA

outperforms VI and SVI consistently in all scenarios. In addition, we observe that both the

methods benefit reasonably when we provide more cores to the computation. We observe

that ESVI-LDA-TOPK, which stores only top 1/4-th of K topics performs the best on both

datasets.

Multi Machine Multi Core

We stretch the limits of ESVI-LDA method and compare it against distributed VI

on large datasets: PubMed and UMBC-3B. UMBC-3B is a massive dataset with 3 billion

tokens and a vocabulary of 3 million. We use 32 nodes and 16 cores, and fit K = 128

topics. As the results in Figure 4.7 demonstrate, ESVI-LDA achieves a better solution than

distributed VI in all cases. On the largest dataset UMBC-3B, ESVI-LDA is also much faster

than VI. In PubMed, VI has a slight initial advantage, however eventually ESVI progresses

much faster towards a better ELBO. ESVI-LDA-TOPK is particularly better than the other

two methods on both the datasets, especially on PubMed.
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Figure 4.6: Single Machine experiments for ESVI-LDA (Single and Multi core). TOPK refers

to our ESVI-TOPK method. P = N × n denotes N machines each with n threads.

Predictive Performance

We evaluate the predictive performance of ESVI-LDA comparing against distributed

VI on Enron and NY Times datasets on multiple cores. As shown in Figure 4.8, ESVI

typically reaches comparable test perplexity scores as VI but in much shorter wallclock time.

On the Enron dataset, VI reaches a perplexity score of 9.052773 after a time of 1576.32 secs.

ESVI, matches this perplexity in just 440 secs, and goes down further to a final score of

8.58929 in 2991 secs. On NY Times, VI starts off at 33.171374 and reaches 16.460541 in

14309 secs. ESVI matches this perplexity in roughly 2000 secs.
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Figure 4.7: Multi Machine Multi Core experiments for ESVI-LDA. TOPK is our ESVI-TOPK

method
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Figure 4.8: Predictive Performance of ESVI-LDA

4.5.3 Handling large number of topics in ESVI-LDA

In VI for LDA, the linear dependence of the model size on K prevents scaling

to large K due to memory limitations. Our ESVI-LDA-TOPK approach addresses this:

instead of storing all K components of the assignment parameter, we only store the most

important top-k topics, which we denote using C. Using a min-heap of size C, we maintain

only C � K topics and we get performance very close to storing all the topics with much
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lesser memory footprint.

Vary C (cutoff for K), Fix K

While the approximation of ELBO must get more accurate as C → K, there might

exist a choice of C << K, which gives a good enough approximation. This will give us

a significant boost in speed. On Enron dataset, we varied C as 1, 8, 32, 64, 128 with true

K = 128 as our baseline. On NY Times dataset, we varied C as 1, 4, 16, 32, 64 with the true

K = 64 as baseline. As we expected, setting the cutoff to a value too low leads to very slow

convergence. However, it is interesting to note that at a cut off value of roughly K
4 (32 on

Enron and 16 on NY Times), we get a good result on par with the baseline. On the larger

datasets - PubMed and UMBC-3B, setting C = 16 was enough to achieve a similar ELBO as

the baseline. (See Figure 4.9).
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Figure 4.9: Effect of varying C in ESVI-LDA-TOPK
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Figure 4.10: Effect of varying K by fixing C

By tuning C, ESVI-LDA-TOPK can be run on large number of topics such as

K = 256 and K = 512 on the largest dataset UMBC-3B (See Figure 4.10).

4.6 Conclusion

In this chapter, we proposed Extreme Stochastic Variational Inference (ESVI),

a distributed, asynchronous and lock-free algorithm to perform inference for mixture of

exponential families. ESVI exhibits simultaneous model and data parallelism, allowing us

to handle real-world datasets with large number of documents as well as learn sufficiently

large number of parameters. For practitioners, we show how to use ESVI to fit GMM and

LDA models on large scale real-world datasets consisting of millions of terms and billions

of documents. In our empirical study, ESVI outperforms VI and SVI, and in most cases

achieves a better quality solution. ESVI framework is very general and can be extended to

several other latent variable models such as Mixed-Membership Stochastic Block Models.
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Chapter 5

Factorization Machines

5.1 Introduction

Factorization Machines (FM), introduced by [Rendle, 2010] are powerful class of

models which combine the benefits of polynomial regression and computational benefits

of low-rank latent variable models such as matrix factorization. They offer a principled

and flexible framework to model a variety of machine learning tasks. With the suitable

feature representation, they can be used to model tasks ranging from regression, classification,

learning to rank, collaborative filtering to temporal models. This makes FM a universal

workhorse for predictive modeling as well as building ranking and recommender systems.

Factorization machines present a novel way to represent the higher-order interactions

using low-rank latent embeddings of the features. A second-order FM thus requires a model

storage of O (K ×D), where K is the number of latent dimensions for a feature and D is

the number of features. While this is substantially smaller than the dense parameterization

of polynomial regression, which would require O
(
D2
)
storage, we notice that training the
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FM model is still fraught will computational challenges. For example, consider the Criteo

click logs dataset [Labs, 2014]. Running FM on this dataset even with a modest latent

representation of K = 128 and 109 features would easily require memory in the order of

1 GB for the model parameters. In addition, the data itself occupies 2.1 TB. Such loads

are impossible to run using a single-machine algorithm and demands developing distributed

algorithms which can partition the workload (both data and parameters simultaneously) over

a cluster of workers.

In this work, we propose DS-FACTO (Doubly-Separable Factorization Machines),

a novel hybrid-parallel [Raman et al., 2019a] stochastic algorithm to scale factorization

machines to arbitrarily large workloads. DS-FACTO is based on the NOMAD framework

[Yun et al., 2014c] and fully de-centralizes the data as well as model parameters across the

workers into mutually exclusive blocks. The key contributions of this work are as follows:

• We propose a Hybrid-Parallel algorithm for factorization machines which can partition

both the data as well as model parameters simultaneously across the workers.

• DS-FACTO follows a fully de-centralized peer-only topology. This avoids the use of

parameter servers and associated bottlenecks in a centralized master-slave topology

[Watcharapichat et al., 2016].

• DS-FACTO is asynchronous and therefore can communicate parameters among the

other workers while performing parameter updates.

• We present an empirical study that shows such a hybrid-formulation for factorization

machines performs competitively as compared to the other existing methods.
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Outline: The rest of the chapter is organized as follows. Section 5.2 studies the

related work and Section 5.3 provides some background for factorization machines. In Section

5.4, we introduce DS-FACTO and describe our hybrid-parallelization approach. Section 5.5 is

devoted to empirical study comparing DS-FACTO to some standard baselines and studying

its scaling behavior. Finally, Section 5.6 concludes the chapter.

5.2 Related Work

Context-aware recommender systems: There has been lot of work in using

factorization machines as the basis to build recommender systems which take into account

the user context for its feature representation. Fast context-aware recommendations with

factorization machines [Rendle et al., 2011] discusses feature parameterizations that can

incorporate diverse types of context information, and also provide numerical pre-computation

techniques to optimize the factorization machine model faster. Gradient Boosting factorization

machines [Cheng et al., 2014] borrows ideas from gradient-boosting to select only a subset of

the pairwise feature interactions to provide more accurate context representations.

Click Through Rate (CTR) prediction: Field-aware factorization machines

(FFM) [Juan et al., 2016] make use of a set of latent vector for each feature which is dependent

on the context of the features with which the pairwise interactions are computed. This is in

contrast with vanilla factorization machines where each features is always provided a single

latent vector. Empirically, they observe that FFMs achieve better predictive performance for

CTR prediction tasks compared to vanilla FMs and polynomial regression models.

[Punjabi and Bhatt, 2018] study robustness of factorization machines and design
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robust counterparts for factorization machines and field-aware factorization machines using

robust optimization principles. [Guo et al., 2016] propose a novel pairwise ranking model

using factorization machines which incorporates implicit feedbacks with content information

for the task of personalized ranking. [Hong et al., 2013] propose Co-Factorization Machines

(CoFM), which can deal with multiple aspects of the dataset where each aspect makes

use of a separate FM model. CoFM is able to predict user decisions and modeling user

interests through content simultaneously. There has also been ample work in extending

factorization machines using advances in neural networks. Neural Factorization machines

[He and Chua, 2017] proposes a variant of FM to apply non-linear activation functions on

the pairwise feature interactions. Likewise, Attentional Factorization Machines [Xiao et al.,

2017a] is a method to improve vanilla FM models by learning the importance of each feature

interaction from data using a neural attention network. DeepFM [Guo et al., 2017] proposes

a new neural network architecture for factorization machines that involves training a deep

component and an FM component jointly. In a completely different vein, [Blondel et al.,

2015] proposes a convex formulation of factorization machines based on the nuclear norm and

propose an efficient two-block coordinate descent algorithm to optimize the model. [Blondel

et al., 2016] discusses how higher-order feature interactions can be used to build more general

factorization machine models. [Rendle, 2013] discusses how factorization machines can be

used on relational data and scaled to large datasets.

Scalability: There is very limited work in the direction of developing distributed

algorithms for factorization machines. LibFM [Rendle, 2012], is one of the most popular

implementations of FM that is based on the original paper [Rendle, 2010], however, it is
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limited to a single-machine. Later, [Li et al., 2016] proposed DiFacto, which is a popular

distributed algorithm for Factorization Machines based on the parameter server framework

[Li et al., 2014]. Parameter Server uses a network of workers and servers to partition the

data among the workers (and optionally, the model among the servers) and makes use of the

message passing interface (MPI) as the communication paradigm. Di-Facto also proposes

strategies to adaptively penalize the model parameters based on the frequency of the observed

feature values. As a result, DiFacto is able to handle larger workloads than LibFM and

also achieves a good predictive performance. [Zhong et al., 2016] is another work in this

direction which also uses parameter server to provide a distributed algorithm for factorization

machines - the key difference being that it uses Hadoop as the distributed framework instead

of MPI. Finally, [Sun et al., 2014] also uses Map-Reduce to parallelize factorization machines.

5.3 Background and Preliminaries

The main goal of predictive modeling is to estimate a function f : RD → Y which

can take as input a real valued feature vector in D dimensions and produce a corresponding

output. We call such a function f the score function. The output set Y can take values

depending on the task at hand. For example, in the case of regression Y ∈ R, while for

classification tasks, Y takes a positive/negative label such as {+1,−1}. In supervised

settings, it is also assumed that there is a training dataset consisting of N examples and

their corresponding labels (xi, yi)i=1,...,N , where each xi is a D-dimensional feature vector.
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5.3.1 Polynomial Regression

In this work we are concerned with score functions which can compute second-order

feature interactions1 (also known as pairwise features) in the model. One simple way to

accomplish this is by using the Polynomial Regression model which computes the following

score function,

f (xi) = w0 +

D∑
j=1

wj xij +

D∑
j=1

D∑
j′=j+1

wjj′ xij xij′ (5.1)

where, xi ∈ RD is an example from the dataset X ∈ RN×D, and the parameters of the model

are w0 ∈ R, w ∈ RD, W ∈ RD×D. wj denotes j-th dimension of w and wjj′ denotes

(i, j)-th entry of W.

The model equation of polynomial regression in (5.1) has a few drawbacks. Real-

world datasets are often heavily sparse, which means that all pairwise feature values are

unlikely to be observed. Therefore, there is not enough information in the data to be modeled

by using a weight for every pairwise feature. Such a parameterization reduces the predictive

performance. Moreover, the weight matrix for pairwise features occupies O
(
D2
)
storage

which can be a limitation when the number of dimensions are high.

5.3.2 Factorization Machines (FM)

Factorization machines propose a different way to parameterize pairwise interaction

between features to overcome the limitations of polynomial regression. FM aims to learn

a latent embedding for every feature such that the pairwise interaction between any two

features can be parameterized using the dot product of the corresponding latent embeddings.
1The techniques described in this chapter also apply to models that compute higher-order feature

interactions, however, for simplicity purposes we assume this simplistic setting.
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As a result of this parameterization, FM models work well even when the dataset is extremely

sparse, since they only rely on first-order feature values being observed in the data. The

score function for factorization machines is computed as,

f (xi) = w0 +
D∑
j=1

wj xij +
D∑
j=1

D∑
j′=j+1

〈
vj ,vj′

〉
xij xij′ (5.2)

where, the model parameters are w0 ∈ R, w ∈ RD, V ∈ RD×K . vj ∈ RK denotes the

j-th dimension of V (latent embedding for the j-th feature).

Naive computation of the score function in FM seems to require O
(
KD2

)
. However,

using a simple rewrite described below [Rendle, 2010], the score function can be computed in

O (KD).

D∑
j=1

D∑
j′=j+1

〈
vj ,vj′

〉
xij xij′ =

1

2

D∑
j=1

D∑
j′=1

〈
vj ,vj′

〉
xij xij′ −

1

2

D∑
j=1

〈vj ,vj〉xij xij

=
1

2

D∑
j=1

D∑
j′=1

K∑
k=1

vjk vj′k xij xij′ −
1

2

D∑
j=1

K∑
k=1

vjk vjk xij xij

=
1

2

K∑
k=1


 D∑
j=1

vjkxij

 D∑
j′=1

vj′kxij′

− D∑
j=1

v2
jkx

2
ij


=

1

2

K∑
k=1


(

D∑
d=1

vdkxid

)2

−
D∑
j=1

v2
jkx

2
ij

 (5.3)

In the sums over j, only nnz (xj) have to be summed up. Plugging this rewrite (5.3) into

the original model equation (5.2), we obtain its simplified form,

f (xi) = w0 +

D∑
j=1

wj xij +
1

2

K∑
k=1


(

D∑
d=1

vdkxid

)2

−
D∑
j=1

v2
jkx

2
ij

 (5.4)

The complete normalized objective function for Factorization Machine model can

now be written as,

L (w,V) =
1

N

N∑
i=1

l (f (xi) , yi) +
λw
2

(
‖w‖22

)
+
λv
2

(
‖V‖22

)
(5.5)
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where,

• f (xi) is given by (5.4)

• λw and λv are used to regularize the parameters w and V

• l (·) is an appropriate loss function depending on the task at hand (e.g. cross-entropy

for binary classification, squared loss for regression).

Symbol Definition

N number of observations

D number of dimensions

K number of latent factors

X = {x1, . . . ,xN}, xi ∈ RD observations (data points)

y = {y1, . . . , yN} observed labels for the observation xi. For regression yi ∈ R. For classifi-

cation yi ∈ {+1,−1}

w ∈ RD, V ∈ RD×K parameters of the model

G = {g1, . . . , gN}, A ∈ RN×K auxiliary variables used in computing the parameter updates

λw, λv regularization hyper-parameters for w and V respectively

η learning rate hyper-parameter

Table 5.1: Notations for Factorization Machines

Optimization: The objective function in (5.5) can be optimized by any gradient

based procedure such as gradient descent. Taking the derivatives of L (w,V) with respect to

the parameters w and V we obtain the following updates for gradient descent,
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wt+1
0 ← wt0 − η ·N (5.6)

wt+1
j ← wtj − η

N∑
i=1

∇wj li (w,V) + λw w
t
j

= wtj − η
N∑
i=1

Gti · ∇wjf (xi) + λw w
t
j

= wtj − η
N∑
i=1

Gti · xij + λw w
t
j (5.7)

vt+1
jk ← vtjk − η

N∑
i=1

∇vjk li (w,V) + λv v
t
jk

= vtjk − η
N∑
i=1

Gti · ∇vjkf (xi) + λv v
t
jk

= vtjk − η
N∑
i=1

Gti ·
{
xij

(
D∑
d=1

vtdk · xid
)
− vtjk x2

ij

}
+ λv v

t
jk (5.8)

where, the multiplier Gti involves computing the score function using the parameter

values of w and V at the t-th iteration as follows,

Gti =


f (xi)− yi, if squared loss (regression)

−yi
1+exp(yi·fi(xi)) , if logistic loss (classification)

(5.9)

The term
∑D

d=1 vdkxid requires synchronization across all D dimensions and can be

pre-computed. Also, in practice, we only need to sum over the non-zero entries per dimension

nnz (xi). We will denote this synchronization term succinctly as aik,

aik =

D∑
d=1

vtdk · xid (5.10)
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5.4 Doubly-Separable Factorization Machines (DS-FACTO)

In this section, we describe our proposed distributed optimization algorithm for

factorization machines DS-FACTO, which is based on double-separability of functions. We

begin by first studying the parameter updates in factorization machines more closely.

5.4.1 Stochastic Optimization

Based on the updates described in (5.7) and (5.8), one can take stochastic gradients

across
∑N

i=1 and obtain update rules as follows,

wt+1
0 ← wt0 − η · 1 (5.11)

wt+1
j ← wtj − η Gti · xij + λw w

t
j (5.12)

vt+1
jk ← vtjk − η Gti ·

{
xij aik − vtjk x2

ij

}
+ λv v

t
jk (5.13)

The above equations show that updates to wj , Vjk require accessing only the j-th

dimension of the i-th example, except the terms Gti and aik which involve a summation over

all dimensions j = 1, . . . , D, and therefore require bulk synchronization at iteration t.

5.4.2 Distributing the computation in FM updates

The synchronization terms Gti and ai are the main bottleneck in developing dis-

tributed algorithms for factorization machines that are model parallel. In this section, we

study the access patterns of data X and parameters w, V during the stochastic gradient

descent (SGD) updates. Figures 5.1 and 5.2 provide a visual illustration. Updating wj and

vjk depends on computing Gi and aik respectively (see Figure 5.1), which unfortunately

require synchronization across all the dimensions j = 1, . . . , D (see Figure 5.2).
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Figure 5.2: Access pattern of parameters while computing G and A. Green indicates the

variable or data point being read, while Red indicates it being updated. Observe that

computing both G and A requires accessing all the dimensions j = 1, . . . , D. This is the

main synchronization bottleneck.

X
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V

G

(a) wj update

X

w

V

G A

(b) vjk update

Figure 5.1: Access pattern of parameters while updating wj and vjk. Green indicates the

variable or data point being read, while Red indicates it being updated. Updating wj requires

computing Gi and likewise updating vjk requires computing aik.
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Handling the synchronization terms G and A: In a distributed machine

learning system, there are two popular ways to synchronize parameters,

• In a centralized distributed framework following a Map-Reduce paradigm (e.g. parame-

ter server), it is common to perform a Reduce step where all the workers transmit their

copies of the parameters to the server which combines them and transmits them back

to each worker.

• Another popular way to synchronize using the All-Reduce paradigm, where all workers

transmit their parameter copies to each other.

Both of the approaches described above perform Bulk Synchronization which essentially

means they make use of a barrier step where every worker waits for all other workers to finish

their execution. Performing bulk synchronization at every iteration to compute G and A is a

huge computational bottleneck.

To resolve this, we propose a different paradigm for synchronization termed as

incremental synchronization [Raman et al., 2019a] which avoids bulk synchronization alto-

gether. The key idea behind incremental synchronization is simple - instead of computing

the exact summation or dot product for the synchronization step, we propose computing it

incrementally using partial sums. This can be done easily when the workers are arranged

in ring topology and follow DSGD style communication (synchronous) or NOMAD style

communication (asynchronous).

Handling the staleness in computing synchronization terms G and A:

Since the stochastic updates modify the parameter values of wj and vjk on each worker, the

older values of Gi and aik will no longer be up-to-date. This causes some staleness which
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can slow down convergence significantly. To resolve this, we re-compute G and A after the

update step, running an additional set of inner-epochs over all examples N and dimensions

D. We observed that this re-computation is very important for such a hybrid-parallel scheme

to convergence correctly.

5.4.3 Algorithm

Algorithm 9 presents a basic outline of DS-FACTO which uses the NOMAD

framework [Yun et al., 2014b] for asynchronous communication. The algorithm begins by dis-

tributing the data X and parameters {w,V} among P workers as illustrated in Figure (CITE)

where the row-blocks represent X(p) and column-blocks represent parameters
{
w(p),V(p)

}
on each local worker respectively. In order to periodically communicate parameter updates

across workers, we also maintain P worker queues. The parameters {w,V} are initially

distributed uniformly at random across the queues. Each worker can then perform its update

in parallel as follows: (1) pops a parameter (k, {wj ,vj}) out of the queue, (2) updates wj and

vjk stochastically using (5.12) and (5.13) respectively, (3) pushes the updated parameter set

into the queue of the next worker. Once D rounds of updates have been performed (which is

equivalent to saying each worker has updated parameters corresponding to every dimension

j ∈ {1, . . . , D}), we perform an additional round of communication across the P workers to

compute the auxiliary variables G(p) and A(p) using the freshest copy of the parameters.
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(a) Initial assignment of parameters {w,V}

and X. Each worker works only on the diago-

nal active area in the beginning.
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(b) After a worker finishes processing column

j, it sends the corresponding parameter set

{wj ,vj} to another worker. Here, {w2,v2} is

sent from worker 1 to 4.
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the new worker. Here, worker 4 can now

process column 2 since it owns the column.
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(d) During the execution of the algorithm, the

ownership of the global parameters {wj ,vj}

changes.

Figure 5.3: Illustration of the communication pattern in DS-FACTO algorithm. Parameters

{wj ,vj} are exchanged in a de-centralized manner across workers without the use of any

parameter servers [Li et al., 2013].
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Algorithm 9 DS-FACTO Asynchronous
1: D: total # dimensions, P : total # workers, T : total outer iterations

2:
{
w(p),V(p)

}
: parameters per worker,

{
G(p), A(p)

}
: auxiliary variables per worker

3: queue[P ]: array of P worker queues

4: Initialize w(p) = 0, V(p) ∼ N (0, 0.01) //Initialize parameters

5: for j ∈
{
w(p),V(p)

}
do

6: Pick q uniformly at random

7: queue[q].push(k, {wj ,vj}) //Initialize worker queues

8: end for

9: //Start P workers

10: for all p = 1, 2, . . . , P in parallel do

11: for all t = 1, 2, . . . , T do

12: repeat

13: (k, {wj ,vj})← queue[p].pop()

14: Update wj and vjk stochastically using (5.12) and (5.13)

15: Compute index of next queue to push to: q̂

16: queue[q̂].push(k, {wj ,vj})

17: until # of updates is equal to D

18: repeat

19: (k, {wj ,vj})← queue[p].pop()

20: Compute G(p) and A(p) using (5.4) and (5.10)

21: until # of rounds is equal to D

22: end for

23: end for
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Although the algorithm snippet in Algorithm 9 assumes a restricted setting consist-

ing of P workers, in practice DS-FACTO uses multiple threads on multiple machines. In

such a scenario, each worker (thread) first passes around the parameter set across all its

threads on its machine. Once this is completed, the parameter set is tossed onto the queue

of the first thread on the next machine.

5.5 Experiments

In our empirical study, we evaluate DS-FACTO to examine its convergence and

scaling behavior. We pick some real-world datasets as shown in Table 5.2 for our study.

Datasets:

Dataset N D K

diabetes 513 8 4

housing 303 13 4

ijcnn1 49,990 22 4

realsim 50,616 20,958 16

Table 5.2: Dataset Characteristics.

5.5.1 Convergence and Predictive Performance

We compare DS-FACTO against libFM [Rendle, 2012] which is a widely used

library for factorization machines. libFM is a stochastic method which samples the data

points stochastically; it however considers all dimensions of the data point while making

the parameter updates. DS-FACTO on the other hand is also stochastic in terms of the
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dimensions; it samples both the data points as well as makes updates only on subsample of

the dimensions2.

Figures 5.4 and 5.5 shows the convergence behavior and predictive performance

of DS-FACTO when compared against libFM. DS-FACTO achieves the similar solution as

libFM by making updates just on a subset of dimensions per iteration.
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Figure 5.4: Convergence behavior of DS-FACTO on diabetes, housing and ijcnn1 datasets.

5.5.2 Scalability

In this sub-section, we present some scalability results, running DS-FACTO in both

multi-threaded as well as multi-core architecture. The results of these experiments are shown
2Note that in practice we use incremental gradient descent instead of vanilla stochastic gradient descent

in DS-FACTO.
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Figure 5.5: Predictive Performance - Test RMSE (Regression) and Test Accuracy (Classifica-

tion) of DS-FACTO on diabetes, housing and ijcnn1 datasets.
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in Figure 5.6 and the dotted line represents linear speedup. DS-FACTO seems to benefit

from multi-core more than multi-threading at this point. One possible reason for this could

be that the overheads of adding and removing parameters from the sender and receiver

queues while performing the asynchronous communication have high dominating costs.
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Figure 5.6: Scalability of DS-FACTO as # of threads, cores are varied as 1, 2, 4, 8, 16, 32.

5.6 Conclusion

In this chapter, we presented DS-FACTO, a distributed stochastic optimization

algorithm for factorization machines which is hybrid-parallel, i.e. it can partition both data as

well as model parameters in a de-centralized manner across workers. In order to circumvent

the bulk-synchronization required in computing the gradients for the parameter updates, we

make use of local auxiliary variables to maintain partial sums of the synchronization terms

and update them in a post-update step. We analyze the behavior of DS-FACTO in terms of

convergence and scalability on several real-world datasets. The data partitioning scheme and

distributed parameter update strategy used in DS-FACTO is very general and can be easily

adapted to scale other variants of factorization machines models such field-aware factorization
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machines and factorization machines for context-aware recommender systems. We believe

these are promising future directions to pursue.
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Chapter 6

Conclusions and future work

In this chapter, we summarize the contributions of this thesis and discuss directions

for future research.

6.1 Contributions

Distributed approaches to training machine learning models typically fall into two

categories namely, Data Parallel where the data is partitioned across multiple workers while

the model is replicated, and Model Parallel where the model is partitioned across workers

while the data is replicated. Both of these approaches fail to handle scenarios when the data

or model sizes exceed the storage capacity of a single worker, which is not unreasonable

to expect with current explosion in data driven internet and mobile applications. In this

work, we argue that Hybrid Parallel methods are necessary to overcome these limitations of

traditional distributed machine learning algorithms. Hybrid Parallelism partitions both the

data as well as model parameters simultaneously across the workers. Since neither data nor
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model is replicated on any worker, such methods can scale to arbitrarily large workloads.

In order to make machine learning tasks hybrid-parallel, we identify an essential property

in their objective functions known as Double-Separability. Double-Separability allows the

objective function of the machine learning task to be decomposed into sub-functions each

of which depend on non-overlapping blocks of data and model parameters. This allows

parameter estimation to be massively parallelized without any locks on the individual units

of parallelism.

While some tasks in machine learning such as Matrix Factorization are naturally

doubly-separable (and thus can be made Hybrid Parallel), most of them are not and require

some work to be cast into such a desirable form. By analyzing the read-write access patterns

in the parameter updates, we propose novel reformulations for the following frequentist

and bayesian models to make them hybrid-parallel. Subsequently, we discuss how to build

synchronous and asynchronous optimization methods for these hybrid-parallel formulations

by making use of the DSGD [Gemulla et al., 2011] and NOMAD [Yun et al., 2013] frameworks

respectively.

Latent Collaborative Retrieval: In Latent Collaborative Retrieval, we formulate

a pairwise learning to rank loss function to rank a set of candidate items for a particular user.

In this setting, both the number of users as well as items can be very large and therefore

computing all pairwise scores across the items can easily become prohibitively high. To solve

this, we need distributed optimization methods which can partition both the users as well as

items parameters across workers. In Section 3, we show how to obtain an unbiased stochastic

optimization algorithm for this setting by reformulating the original pairwise loss function.
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Multinomial Logistic Regression: Multinomial Logistic Regression involves

predicting the probability that an observation belongs to one of the K categories and is

optimized by minimizing the negative log probability of an observation belonging to a

particular class. The fundamental bottleneck to model parallelism in this setting is the

log-partition function which needs to be computed across all K classes per observation.

In Section 3, we present a reformulation to convert the original objective function into a

doubly-separable form and hence can be made hybrid-parallel.

Mixture of Exponential Families: Mixture of Exponential Family models

encompass a wide variety of probabilistic models which can be used to model N observations

arising from K different component distributions. The state of the art method for performing

inference in mixture models - Stochastic Variational Inference (SVI) is inherently serial in

that it replicates the O (K ×D) parameters (where D is the dimension of the observations)

on every worker even in the distributed setting. This poses limitations on the number of

components that can the model can be trained on when K and D are very large. In Chapter

4, we address this fundamental bottleneck by proposing a novel sequence of local and global

updates which involve no overlap in the parameter access patterns. As a result, variational

inference can be made Hybrid-Parallel and scaled to arbitrarily large values of N and K.

Factorization Machines: Factorization Machines present a systematic way to

combine first-order features with second-order (pairwise) features in a model. In order to

make more effective use of the pairwise features, they propose using a factorized weight

matrix. In this setting, the storage complexity for the model scales as O (K ×D), where

K is the number of latent dimensions for a feature and D is the total number of features.
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For e.g. the cost of storage becomes high on massive datasets such as Criteo Tera logs, even

with K = 128, D = 109. This motivates the need to partition not only the data but also

the model. We observe that the objective function of factorization machines is amenable to

Hybrid-Parallelism with some book keeping to handle the synchronization terms. In Chapter

5, we analyze the access pattern of parameters in more detail and propose a strategy to

obtain Hybrid Parallelism.

6.2 Future Work

The work in Chapter 3, DS-MLR can be naturally extended to the multi-label

setting to scale to large number of data points and labels. In addition, by linearizing the

log-partition function, one can potentially develop Hybrid-Parallel algorithms for a variety

of log-linear models since they share similar computational structure as the optimization

problem for multinomial logistic regression.

Another intriguing direction to explore making use of techniques proposed in this

thesis to develop hybrid-parallel training algorithms for Deep Neural Networks. There has

been some work in this direction in the past. [Carreira-Perpinan and Wang, 2014] propose

introducing auxiliary variables in the objective functions of deep neural networks to de-couple

the parameter estimation.

The work in Chapter 4, ESVI can also be extended to other types of mixture of

exponential family models such as Mixed Membership Stochastic Block Models [Airoldi et al.,

2008] which are generative models to discover communities in graphs such as social networks.

Finally, although the work in this thesis has focussed on parametric bayesian models,
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parameter estimation for large-scale non-parametric bayesian models still remains challenging.

Examples of such models include - Dirichlet Process Mixture Models [Blei et al., 2006]

and Pitman-Yor Mixture Models [Dubey et al., 2014] which exhibit similar computational

structure and scaling challenges. It would be interesting to explore how techniques from this

thesis can be leveraged to make these models Hybrid-Parallel.
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Appendix A

Details of the Analysis and Proof of

Theorem 1

In DS-MLR, for each epoch t ∈ {1, . . . , T}, where T is the total number of iterations,

the algorithm performs the following Incremental Gradient Descent steps: (a) Re-shuffle the

indices of the data points {x}ni=1, (b) Cyclically scan the index-set picking each data point xi

and make stochastic gradient updates for wk using (xi,wk) ∀k ∈ {1, . . . ,K}.

Since in Algorithm 3, bi is updated in closed-form using (3.9), we can optimize B

out from F (W,B), thereby working with F (W ).

F (W ) = F (w1, . . . ,wK) =
N∑
i=1

K∑
k=1

fki(wk) =
1

n

n∑
i=1

fi (W ) (A.1)

where fi(W ) = λ
2 ‖W‖

2 − wTyixi + log
∑K

k=1 exp(wT
k xi). Clearly, fi has the variational

representation,

fi (W ) =
λ

2
‖W‖2 − wTyixi + min

ai∈R

{
−bi +

K∑
k=1

exp
(
wT
k xi + bi

)}
− 1 (A.2)
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Modeling the effects of re-shuffling indices per epoch:

Let us assume a permutation function σt (·): [n] → [n], that produces a permutation of the

indices of the data points {xi}ni=1 at the beginning of every epoch t. The update for wk can

be then written as follows:

wt,m
k = wt,m−1

k − ηt∇fσt(m)

(
wt,m−1
k

)
(A.3)

for 1 ≤ m ≤ n. Here wt,m
k represents the m-th iterate within the t-th epoch. ηt is the

step-size per epoch which is decayed as per the rule: ηt = η0√
t
, after choosing a carefully

tuned value for η0. We define a random variable Rt to capture the gradient error due to the

random re-shuffling of indices every epoch. Rt is defined as,

Rt =
n∑
i=1

∇fσt(i)
(
wt,i−1
k

)
−

n∑
i=1

∇fσt(i)
(
wt,0
k

)
(A.4)

Modeling staleness in incremental gradient updates:

We are not able to make increment gradient updates using the optimal wt,n
k for the inner-

iterations {1, 2, . . . , n} as they remain stale during the inner-iterations. As a result of this,

the variational parameter bi calculated are also stale. This could affect the convergence

and needs to be factored into the analysis. Lemma 3 shows that despite the staleness, the

incremental gradient computed in these n inner-iterations at wt,n
k is not too far from the

true gradient at wt
k.

Lemma 3. Denote the approximate gradient of fσ(i) evaluated at wt,n
k based on bti as

G̃tk = (g̃1, . . . , g̃K), (A.5)

where g̃c = λwtk,c − [yi = c]xi + exp(xTi w
t
k,c + ati)xi.

Then
∥∥∥G̃tk −∇fi(wtk)∥∥∥ ≤ r

K

∥∥∥wt,nk − wtk∥∥∥.
135



Proof. Unfolding the term bti,

g̃c −
∂

∂wc
fi(w

t
k) =

(
exp(xTi w

t
k,c)∑K

c=1 exp(xTi w
t
c)
−

exp(xTi w
t
k,c)∑K

c=1 exp(xTi w
t
k,c)

)
xi

Therefore

∥∥∥G̃−∇fi(wtk)∥∥∥ ≤ r√K
∣∣∣∣∣ 1∑K

c=1 exp(xTi w
t
c)
− 1∑K

c=1 exp(xTi w
t
k,c)

∣∣∣∣∣
So it suffices to upper bound the gradient of 1/

∑K
c=1 exp(xTi wc). Since xi and wc are

bounded, exp(xTi wc) is lower bounded by a positive universal constant 1. Now,∥∥∥∥∥∇w 1∑K
c=1 exp(xTi wc)

∥∥∥∥∥
=

1

(
∑K

c=1 exp(xTi wc))
2

∥∥(exp(xTi w1)xi, . . . , exp(xTi wK)xi)
∥∥

≤
√
K

K2
r

Next, we bound some quantities that will prove to be useful later. ‖∇fi(w)‖ ≤ B

by assumption of bounded gradient Without loss of generality, suppose fk is used for update

at step k. Then wtk is subtracted by ηt
N (λwtk − xk ⊗ e′yk + G̃tk), where ⊗ is Kroneker product

and ec is a canonical vector. As long as ηt ≤ 1
λ , we can recursively apply Lemma 3 and

derive bounds

∥∥wtk − wt∥∥ ≤ k

N
ηtr, (A.6)∥∥∥∇fk(wtk)− G̃tk∥∥∥ ≤ ηtr, (A.7)∥∥∥G̃tk∥∥∥ ≤ r, (A.8)

1If one is really meticulous and notes that ‖w‖2 ≤ 2λ logK which does involve K, one should be appeased
that exp(

√
logK) is o(Kα) for any α > 0.
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for all k.

Deriving the main result:

For one epoch, we have the following inequality,

‖wt,n
k −w∗k‖2

= ‖wt,0
k −w∗k‖2 − 2ηt

〈
wt,0
k −w∗k,

n∑
i=1

∇fσt(i)
(
wt,i−1
k

)〉

+ η2
t

∥∥∥∥∥
n∑
i=1

∇fσt(i)
(
wt,i−1
k

)∥∥∥∥∥
2

(A.9)

= ‖wt,0
k −w∗k‖2 − 2ηt

〈
wt,0
k −w∗k, n∇F

(
wt,0
k

)〉
︸ ︷︷ ︸

− 2ηt

〈
wt,0
k −w∗k, R

t
〉

+ η2
t

∥∥∥n∇F (wt,0
k

)
+Rt

∥∥∥2
(A.10)

≤ ‖wt,0
k −w∗k‖2 − 2nηt

(
Lµ

L+ µ
‖wt,0

k −w∗k‖2 +
1

L+ µ
‖∇F

(
wt,0
k

)
‖2
)

︸ ︷︷ ︸
− 2ηt

〈
wt,0
k −w∗k, R

t
〉

+ 2n2η2
t ‖∇F

(
wt,0
k

)
‖2 + 2η2

t ‖Rt‖2 (A.11)

=

(
1− 2nηt

Lµ

L+ µ

)
‖wt,0

k −w∗k‖2 −
(

2nηt
L+ µ

− 2n2η2
t

)
‖∇F

(
wt,0
k

)
‖2

− 2
〈
wt,0
k −w∗k, R

t
〉

+ 2η2
t ‖Rt‖2 (A.12)

where the inequality is due to Theorem 2.1.11 in [Nesterov, 2013].

Take the expectation of (A.12) over permutation σt (·), we get:

E[‖wt,n
k −w∗k‖2]

≤
(

1− 2nηt
Lµ

L+ µ

)
‖wt,0

k −w∗k‖2 −
(

2nηt
L+ µ

− 2n2η2
t

)
‖∇F

(
wt,0
k

)
‖2

− 2
〈
wt,0
k −w∗k,E[Rt]

〉
︸ ︷︷ ︸

T1

+ 2η2
t E[‖Rt‖2]︸ ︷︷ ︸

T2

(A.13)

Terms T1 and T2 which involve Rt capture the random effects. To bound them,
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we make use of Lemma 1 and Lemma 3 presented in [HaoChen and Sra, 2018] and obtain

higher-order powers of ηt as O(η3
t ), O(η4

t ), and O(η5
t ). Following these steps, the expectation

in (A.13) can be written as,

E[‖wt,n
k −w∗k‖2]

≤
(

1− 2nηt
Lµ

L+ µ

)
‖wt,0

k −w∗k‖2 +

(
2n2η2

t −
2nηt
L+ µ

)
‖∇F

(
wt,0
k

)
‖2

+ η3
t nC1 + η5

t n
5C2 + η4

t n
4C3 (A.14)

where C1 = 2
µL

2B2, C2 = 2
µL

4B2, C3 = 1
2L

2B2.

Using (A.8) to bound ‖∇F
(
wt,0
k

)
‖2 and using constants C4 = 2Lµ

L+µ , C5 = 2r2 and

C6 = 2r2

L+µ , we simplify (A.14) as:

E[‖wt,n
k −w∗k‖2] ≤

(
1− ηtnC4

)
‖wt,0

k −w∗k‖2 + η2
t n

2C5 − ηtnC6

+ η3
t nC1 + η5

t n
5C2 + η4

t n
4C3 (A.15)

The term involving C6 can be dropped to maintain the inequality, since nC6 > 0.

Since ηt is monotonically decreasing, we can ignore the higher-order terms and further

simplify the expectation as:

E[‖wt,n
k −w∗k‖2] ≤

(
1− ηtnC4

)
‖wt,0

k −w∗k‖2 + η2
t n

2C5 (A.16)

For simplicity, we denote M1 = nC4 and M2 = n2C5. In addition, let Et =

√
t E[‖wt,n

k −w∗k‖2]. Also note that, the iterate during the first inner-iteration of t-th epoch

wt,0
k is the same as the iterate during the last inner-iteration of the (t− 1)-th epoch wt−1,n

k .
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Using these, (A.16) can be written in the form of a recursive inequality,

Et+1√
t+ 1

≤ (1− ηtM1)
Et√
t

+ η2
tM2 (A.17)

=

(
1− η0√

t
M1

)
Et√
t

+
η2

0

t
M2 (A.18)

Multiplying both sides by
√
t+ 1,

Et+1 ≤
(

1− η0√
t
M1

) √
t+ 1√
t

Et +

√
t+ 1

t
η2

0M2 (A.19)

We now state the following inequalities which we will use to further simplify the

bound in (A.19),

√
t+ 1√
t
≤
√
t+ 1√
t

∀t > 0, (A.20)
√
t+ 1

t
≤ 2√

t
∀t > 0, (A.21)

√
t+ 1√
t
≥ 1 ∀t > 0 (A.22)

Using (A.20) and (A.21), the recursive expectation in (A.19) becomes,

Et+1 ≤
(

1− η0√
t
M1

) √
t+ 1√
t

Et +
2√
t
η2

0M2 (A.23)

=

(√
t+ 1√
t
−
√
t+ 1√
t

η0√
t
M1

)
Et +

2√
t
η2

0M2 (A.24)

≤
(√

t+ 1√
t
− η0√

t
M1

)
Et +

2√
t
η2

0M2 (A.25)

where the last inequality uses (A.22). Assuming η0M1 > 1, we get

Et+1 ≤
(

1− η0M1 − 1√
t

)
Et +

2√
t
η2

0M2 (A.26)

We now apply the following Lemma 4 to (A.26) which finally leads to the main

result presented in Theorem 1. Lemma 4 is proved by proof of induction.
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Lemma 4. With Et =
√
t E[‖wt,n

k −w∗k‖2], M1 = nC4 and M2 = n2C5 (where constants C4

and C5 depend on L and µ), we can bound the expectation for t-th iteration relative to the

first iteration as follows,

Et ≤ E1 +
2η2

0M2

η0M1 − 1
(A.27)

Proof. (A.26) can be written as,

Et+1 ≤
(

1− η0M1 − 1√
t

)
Et +

2√
t
η2

0M2 (A.28)

≤
(

1− η0M1 − 1√
t

)(
E1 +

2η2
0M2

η0M1 − 1

)
+

2√
t
η2

0M2 (A.29)

≤
(

1− η0M1 − 1√
t

)
E1 +

2η2
0M2

η0M1 − 1
−
(
η0M1 − 1√

t
· 2η2

0M2

η0M1 − 1

)
+

2η2
0M2√
t

(A.30)

=

(
1− η0M1 − 1√

t

)
E1 +

2η2
0M2

η0M1 − 1
≤ E1 +

2η2
0M2

η0M1 − 1
(A.31)
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Appendix B

Additional Experiments for Ranking

B.0.1 Advantage of Using Robust Transformation

In this section, we evaluate the advantage of RoBiRank loss function (2.11) over

simpler alternatives. The first obvious baseline is the objective function of Buffoni et al.

[2011], which we introduced in (2.6):

Lidentity(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
∑

y′∈Yx,y′ 6=y
σ0

(
fω(x, y)− fω(x, y′)

)
, (B.1)

which has an advantage of being a convex objective function. While RoBiRank applies robust

transformation in the following way

LRoBiRank(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) · ρ1

 ∑
y′∈Yx,y′ 6=y

σ0

(
fω(x, y)− fω(x, y′)

) (B.2)

a simpler alternative would be the following:

LRobust(ω) :=
∑
x∈X

cx
∑
y∈Yx

v (Wxy) ·
∑

y′∈Yx,y′ 6=y
ρ1

(
σ0

(
fω(x, y)− fω(x, y′)

))
, (B.3)

which simply applies robust transformation on each of the logistic losses, instead on the

sum of them as RoBiRank does. For convenience of reference, we will call (B.1) and (B.3)
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Dataset RoBiRank Identity Loss Robust Loss

TD 2003 0.9719 0.9704 0.9704

TD 2004 0.9708 0.9672 0.9674

HP 2003 0.9960 0.9947 0.9950

HP 2004 0.9967 0.9941 0.9943

MQ 2007 0.8903 0.8856 0.8783

MQ 2008 0.9221 0.8857 0.9205

MSD 30.93% 16.97% 16.83%

Table B.1: Comparison of RoBiRank against Identity Loss and Robust Loss as described in

Section B.0.1. We report overall NDCG for experiments on small-medium datasets, while on

the Million Song Dataset (MSD) we report Precision@1.

Identity loss and Robust loss, respectively.

We followed the same experimental protocol as in Section ?? and Section 2.3.4, and

results can be seen in Table B.1 and Figure B.1. Identity loss and Robust loss had little

difference between them; RoBiRank shows clear advantages over other baselines on TD2004,

HP2004 and Million Song Dataset (MSD), and performs at least as well as others on rest of

the datasets.

B.0.2 Sensitivity to Initialization

We also investigated the sensitivity of parameter estimation to the choice of initial

parameter. We initialized ω randomly with 10 different seed values. Blue lines in Figure B.2
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Figure B.1: Comparison of RoBiRank with other baselines (Identity Loss and Robust Loss),

see Section B.0.1
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show mean and standard deviation of NDCG values at different levels of truncation; as

can be seen, even though our objective function is non-convex, L-BFGS reliably converges

to solutions with similar test performance. This conclusion is in line with the observation

of Ding [2013]. We also tried two more variants; initialization by all-zeroes (red line) and the

solution of RankSVM (black line). In most cases it did not affect the quality of solution, but

on TD 2003 and HP 2004 datasets, zero initialization gave slightly better results.
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Figure B.2: Performance of RoBiRank based on different initialization methods
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Appendix C

Additional Results for Learning to

Rank Experiments

In appendix A, we present results from additional experiments that could not be

accommodated in the main paper due to space constraints. Figure C.1 shows how RoBiRank

fares against InfNormPush and IRPush on various datasets we used. Figure C.2 shows

a similar comparison against the 8 algorithms present in RankLib. Table C.1 provides

descriptive statistics of all the datasets we ran our experiments, Overall NDCG values

obtained and values of the corresponding regularization parameters. Overall NDCG values

have been omitted for the RankLib algorithms as the library doesn’t support its calculation

directly.
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Figure C.1: Comparison of RoBiRank, RankSVM, LSRank [Le and Smola, 2007], Inf-Push

and IR-Push

148



5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

TD 2003

RoBiRank
MART

RankNet
RankBoost
AdaRank

CoordAscent
LambdaMART

ListNet
RandomForests

5 10 15 20
0.4

0.6

0.8

1

k
N

D
C

G
@

k

TD 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 1

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

Yahoo Learning to Rank - 2

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2003

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

HP 2004

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

OHSUMED

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2007

5 10 15 20
0.4

0.6

0.8

1

k

N
D

C
G

@
k

MQ 2008

Figure C.2: Comparison of RoBiRank, MART, RankNet, RankBoost, AdaRank, CoordAscent,

LambdaMART, ListNet and RandomForests
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Appendix D

ESVI-LDA

In this section, we show how to apply ESVI to Latent Dirichlet Allocation (LDA).

Recall the standard LDA model by Blei et al.[Blei et al., 2003]. Each topic βk, k ∈ [K] is

a distribution over the vocabulary with size V and each document is a combination of K

topics. The generative process is:

• Draw topic weights βk ∼ Dirichlet(η), k = 1 . . .K

• For every document di ∈ {d1, d2 . . . dD}:

– Draw θi ∼ Dirichlet(α)

– For each word n ∈ [N ]:

∗ Draw topic assignment zin ∼ Multi(θi)

∗ Draw word win ∼ Multi(βzin)

where α ∈ RK and η ∈ RV are symmetric Dirichlet priors. The inference task for LDA is

to characterize the posterior distribution p(β, θ, z|w). While the posterior is intractable to
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compute, many methods have been developed to approximate the posterior. Here we use the

idea in previous sections to develop extreme stochastic variational inference for LDA.

We denote the assignment of word n in document di as zin where zi ∈ RK . Also

win denotes the n-th word in i-th document. Thus in LDA, the local hidden variables for a

word is the word assignment vector zin and local hidden variable for a document is zi and

the topic mixture θi. The global hidden variable are the topics βk. Given these, we can

formulate the complete conditional of the topics βk θi and zin as:

p(βk|z, w) = Dirichlet(η +

D∑
i=1

N∑
n=1

zkinwin)

p(θi|zi) = Dirichlet(α+
N∑
n=1

zin)

p(zkin = 1|θi, β1:K , win) ∝ exp
(
log θik + log βwink

)
We denote multinomial parameter for zkin as φkin, Dirichlet parameter for βk and θi as λk and

γi. The update rules for these three variational parameters are:

γi = α+
N∑
n=1

zin

λk = η +
D∑
i=1

N∑
n=1

zkinwin,

φkin ∝ exp

(
Ψ(γki ) + Ψ(λwink )−Ψ(

V∑
v=1

λvk)

)

where Ψ is the digamma function and we denote πk =
∑V

v=1 λ
v
k. Traditional VI

algorithms infer all the local variables θ, z and then update the global variable β. This is

very inefficient and not scalable. Notice that when updating φkin we only need to access

γki , λ
win
k and πk. And similarly, once φkin is modified, the parameters that need to be
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updated are γki , λ
win
k and πk. Therefore, as long as πk can be accessed, the updates to these

parameters can be parallelized. Based on the ideas we introduced in Section 4.4, we propose

an asynchronous distributed method ESVI-LDA, which is outlined in Algorithm 10. Besides

working threads, each machine also has a sender thread and a receiver thread, which enables

the non-locking send/recv of parameters. One key issue here is how to keep π1:K up-to-date

across multiple processors. For this, we follow [Yu et al., 2015b], who present a scheme for

keeping a slowly changing K dimensional vector, approximately synchronized across multiple

machines. Succinctly, the idea is to communicate the changes in π using a round robin

fashion. Since π does not change rapidly, one can tolerate some staleness without adversely

affecting convergence.

In order to update φkin we need only to access γki λ
win
k and πk. And similarly, once

φkin is modified, only parameters γki , λ
win
k and πk need to be updated. Following that, for

each word token, these parameters can be updated independently. In our setting, each

machine loads its own chunk of the data, and also has local model parameters γ and φ. Each

machine maintains a local job queue that stores global parameters λ that is now owned

by this machine. After updating with each λv1:K , the machine sends it to another machine

while pushing v into the job queue of that machine. This leads to a fully asynchronous and

non-locking distributed algorithm.
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Algorithm 10 ESVI-LDA Algorithm
Load {d1 . . . dD} into P machines, Initialize φ, γ, λ using priors α, η

Initialize job queue Q: distribute λ1:V in P machines, Initialize sender queue qs

for every machine asynchronously do

// Receiver Thread

while receive λv do

push (Qt, λ
v) for some t

end while

// Sender Thread

while not qs.empty () do

send qs.pop() to next random machine

end while

// Worker Thread

pop from Qt: λv,

for all local word token s.t. wdn = v do

for k = 1 . . .K do

φkdn ∝ exp
(
ψ
(
γkd
)

+ ψ
(
λwdnk

)
− ψ (

∑
v λ

v
k)
)

end for

for k = 1 . . .K do

(1) γkd+ = φkdn − φkdn(old), (2) λwdnk + = φkdn − φkdn(old)

end for

Update global
∑

v λ
v
k

end for

qs.push (λv)

end for
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Appendix E

ESVI-GMM

Since the distribution of computation in ESVI-GMM method also works in a similar

manner as ESVI-LDA Algorithm 10 (only the local and global updates need to be replaced),

in this section, we only present the update rules for the local and global variational parameters

for Gaussian Mixture Models (GMM).

E.0.1 VI updates for GMM

The generative process for this model assumes that data x = (x1, . . . , xN ) is

generated by a mixture of K gaussian distributions whose mean and precision are given by

µ = {µk} and Λ = {Λk}. π ∈ ∆k denotes the mixing coefficient, where ∆k is defined to be the

K-dimensional simplex. These are the global variables. As usual, z = (z1, . . . , zN ) , zi ∈ ∆k

denotes the latent variable to keep track of the component assignments to the data points.

These are the local variables.
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The conditional distributions for the data x and z (likelihood) can be written as:

p (x|z, µ,Λ) =

N∏
i=1

K∏
k=1

N
(
xi|µk,Λ−1

k

)zik
p (z|π) =

N∏
i=1

K∏
k=1

πzikk

We now introduce the following conjugate priors to simplify the bayesian inference.

p (π) = Dirichlet (π|α0)

p (µ,Λ) = p (µ|Λ) · p (Λ)

=

K∏
k=1

N
(
µk|m0, (β0Λk)

−1W (Λk|W0, ν0)
)

︸ ︷︷ ︸
Gaussian-Wishart

where, m0, α0, β0, ν0,W0 are hyper-parameters that can be initialized to some suitable value.

Given this setup, we can express the joint distribution of all our random variables as:

p (x, z, π, µ,Λ) = p (x|z, µ,Λ) · p (µ,Λ)︸ ︷︷ ︸
conjugate pair

· p (z|π) · p (π)︸ ︷︷ ︸
conjugate pair

Clearly, the corresponding posterior distribution p (z, π, µ,Λ|x) involves computing expensive

high-dimensional integrals and therefore a simpler variational distribution q is used as an

approximation:

q (z, π, µ,Λ) = q (z) · q (π) ·
K∏
k=1

q (µk,Λk)

= q (z) · q (π|α)︸ ︷︷ ︸
Dirichlet

·
K∏
k=1

q
(
µk|mk, (βkΛk)

−1
)

︸ ︷︷ ︸
Gaussian

· q (Λk|Wk, νk)︸ ︷︷ ︸
Wishart

Optimizing the ELBO, leads to the following local and global variable updates.
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Update rules for local variables:

ρi,k = exp

E [log πk]︸ ︷︷ ︸
t1

+
1

2
E [log |Λk|]︸ ︷︷ ︸

t2

−D
2

log 2π − 1

2
Eµk,Λk

[
(xi − µk)> Λk (xi − µk)

]
︸ ︷︷ ︸

t3


where, the terms t1, t2 and t3 are given by:

t1 = ψ (αk)− ψ
(

K∑
k=1

αk

)

t2 =

D∑
j=1

ψ

(
νk + 1− j

2

)
+D log 2 + log |Wk|

t3 = Dβk
−1 + νk (xi − µk)>Wk (xi − µk)

Using these, the local updates can be written as:

z̃i,k =
ρi,k∑K

k′=1 ρi,k′

Update rules for global variables:

For these, first we define some intermediate quantities that are used in the global updates.

Nk =
N∑
i=1

z̃i,k

x̄k =
1

Nk

N∑
i=1

z̃i,k · xi

Sk =
1

Nk

N∑
i=1

z̃i,k (xi − x̄k) (xi − x̄k)>
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Using these, the global updates can be written as:

q (Λk) ∼ W (Λk|Wk, νk)

q (µk|Λk) ∼ N
(
µk| (βkΛk)−1

)
q (π|α) ∼ Dirichlet (π|α)

where the above parameters are given by:

βk = β0 +Nk

mk =
1

βk
(β0 ·m0 +Nk · x̄k)

W−1
k = W0

−1 +Nk · Sk +
β0Nk

β0 +Nk
(x̄k −m0) (x̄k)−m>0

νk = ν0 +Nk

E.0.2 Scaling to large dimensions

When the dimensions D are large, GMM becomes computationally heavy since it

involves the storage and inversion of a large O(D ×D) matrix. To overcome this problem,

we make the assumption of diagonal covariance matrix Σk = diag
(
σ2

1, . . . , σ
2
D

)
for each

component k, which intuitively means that the dimensions are independent within each

mixture component. This lets us run ESVI-GMM on larger datasets.
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Appendix F

Parameter Settings used in the

empirical study

In this sub-section, we describe the hyper-parameter settings used for our empirical

study for ESVI. Details of the experiment are available in Section 5.5.

• In Gaussian Mixture Models (GMM) experiments, we used α0 = 5, β0 = 1, m0 = 0.

ν0 and W0 were turned per dataset based on the best performance. We set {ν0,W0}

as {300000, 0.1} for TOY, {300000, 0.1} for AP-DATA, {500000, 0.5} for NIPS and

{500000, 0.5} for NYTIMES datasets.

• For the SVI methods, we used a batch size of 100 (we tried various batch sizes and

picked the value we found to provide the best results). The step-size in SVI was decayed

following the recommendation in [Hoffman et al., 2013], namely, ηt = η0
(1+t) , where η0

was carefully tuned and set to 0.1. Here, t denotes the iteration index.
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